Abstract:
One embodiment of a low-profile transducer includes a at least one fin perpendicularly mounted on a planar diaphragm, with a voice coil mounted onto the fin. The voice coil may reside in a strong uniform magnetic field. The locations at which the diaphragm is connected to a frame may be coplanar with a center of mass of the diaphragm. The three-dimensional structure of diaphragm and fins may be formed using origami techniques.
Abstract:
A screen printing ink includes micelle structural particles formed by aggregating molecules of ammonium acrylate to dispersed particles containing phenol resin, and a dispersion medium for dispersing the micelle structural particle.
Abstract:
The invention relates to so-called panel loudspeakers (11) working according to the multiresonance principle. Said loudspeakers are generally formed by a core layer (13) and at least one outer layer (14.o, 14.u). The outer layers (14.o, 14.u) are connected to the core layer (13). A periphery is also provided (12) enclosing the panel loudspeaker (11) at a lateral distance (A). The panel loudspeaker is connected to the periphery (12) by means of connecting elements (17, 17′). Although good reproduction results can be obtained in the mid and high audio frequencies with the panel loudspeakers (11) described above, undesired large panel surfaces are known to be required for good low frequency reproduction. When such panel surfaces are not used, the lowest panel resonances ensuring bass reproduction are shifted towards the midfrequencies. Hence, the invention aims at providing a panel loudspeaker (11) exhibiting improved acoustic reproduction in the low frequency range despite a relatively smaller panel surface. According to the invention, this is achieved in that the connecting elements (17 17′) are subjected to mechanical tension when they are connected to the periphery (12) resulting in supplementary particularly low frequency drum resonances in addition to the existing low frequency panel resonances, which can be modulated by the tension in the connecting elements (17, 17′).
Abstract:
An ultra low frequency transducer or subwoofer for automotive speaker systems with a rectangular or square, concave diaphragm. The square periphery preferably is sized to be substantially coextensive with the front of the speaker housing or cabinet. In this way, air displacement in the subwoofer is maximized for a given size of enclosure, and thus so is the loudness of the speaker. The transducer typically includes a frame or basket with a square front for supporting the periphery of the diaphragm. The preferred diaphragm includes a convex surround with pleated corners. For increased durability, trusses are formed in the diaphragm.
Abstract:
A suspension element coupled to a diaphragm and to a frame of an acoustic device. The suspension element includes a first surround element and a second surround element that are located adjacent to each other. At least one of the surround elements includes at least one or more openings. The at least one or more openings have features of being located at an edge of the at least one of the surround elements adjacent to the other surround element, or being located in both of the surround elements.
Abstract:
An electronic device has an exterior housing with a piezoelectric speaker disposed in an opening formed within the housing. The piezoelectric speaker includes a speaker diaphragm that is secured within the opening with a vibration isolator. The vibration isolator allows the diaphragm to vibrate independently from the housing.
Abstract:
An electro-acoustic transducer includes an accordion-type structure that functions as both an acoustic radiation element and an acoustic seal. In one example, the transducer includes parallel, accordion-type structures that attach to a flat, rectangular diaphragm. The diaphragm is connected to a voice coil. The voice coil and an associated frame are positioned between a magnet arrangement. The magnet arrangement includes stacked magnet pairs positioned between pole pieces to focus magnetic flux.
Abstract:
A loudspeaker (100) comprising: an electro-magnetic motor (114) configured to receive electrical signals and, based on the received electrical signals to induce vibrations in a diaphragm (116) for generating a pressure wave; a surround (118) connected to the diaphragm for suspending the diaphragm from a driver chassis (120); and a damper (126) in contact with the surround for damping the vibrations in the surround and the diaphragm.