Abstract:
A method and system for determining canopy coverage to a golf green to assist in increasing sunlight exposure of the green. The system allows users to enter data regarding the golf green, surrounding foliage, and other topographical and man-made features surrounding the green. The system can then plot the sun's path for a specific date and simulate shadows cast on the green by the surrounding foliage and features. Furthermore, the system allows the user to generate what-if data, allowing projected effects on canopy coverage to be viewed before any modifications to the canopy are carried out.
Abstract:
A reflected beam 6 is diffracted by regions 7a and 7b of a hologram 71, these diffracted beams are converged or diverged, and ±1-order diffracted beams from each region are received by light-receiving regions 9a+to 9b−arranged apart from the center of the hologram by a distance almost optically equal to the distance between the center point of the hologram and a convergence (focal) point of the 0-order reflected beam. Three signals obtained from three regions of each light-receiving region are calculated to obtain a focus signal, and, at the same time, signals obtained from four regions of each light-receiving region are calculated to obtain a tracking signal, so that, by using both the ±1-order diffracted beams, a focus error signal detected by the SSD method and a tracking error signal detected by the DPD method are simultaneously obtained with high efficiency and high precision.
Abstract:
A Shack-Hartmann wavefront sensor having an aperture which is smaller than the size of an object being measured is used to measure the wavefront for the entire object. The wavefront sensor and the object are translated relative to one another to measure the wavefronts at a plurality of subregions of the object. The measured wavefronts are then stitched together to form a wavefront of the object. The subregions may overlap in at least one dimensions. A reference surface may be provided to calibrate the wavefront sensor.