Abstract:
A drawer manipulation system adapted to facilitate opening of a drawer supported within a cabinet. The system includes at least one biasing actuator adapted for mounting in supported relation at projecting edge elements within the cabinet housing the drawer. The actuator incorporates an arrangement of slotted engagement surfaces adapted to accept supporting edge structures. The actuator may be used in conjunction with a push-push latch assembly.
Abstract:
A sliding door with reversible hand configurations can include a plurality of mounting locations along a top and a bottom edge thereof. The plurality of mounting locations can be configured to allow the sliding door to selectively hang and operate according to multiple orientations in order to satisfy site-specific handedness requirements. In one implementation, the sliding door includes a door frame and mounting hardware for selectively mounting the sliding door to a roller track affixed near the upper portion of a doorway.
Abstract:
A hinge for wings or doors, in particular of electrical appliances, comprises a first element, a second element and a lever for connecting the first and second elements; the lever pivots on the second element and has a first arm integral with the first element to render the first and second elements movable relative to one another with a tilting action between a closed position and an open position; the second element consisting of a substantially box-shaped body containing a spring, inserted between the second element and a second arm of the lever so as to apply an elastic action to the lever.
Abstract:
An air damper includes a cylinder having a bottom, a piston received inside the cylinder to move freely back and forth coaxially, and an orifice provided in the piston. The piston is formed of a synthetic resin, and has a piston rod extending toward a side of the cylinder opposite to the bottom, and a recess portion provided on a portion facing the bottom in order to prevent sink or the like during molding of the piston. A protruding portion is provided on the bottom of the cylinder to protrude into the recess portion when the piston is fully moved into the cylinder.
Abstract:
Embodiments of the present invention provide for shock absorbing interlocks for multi-panel sliding doors that operate smoothly and relatively noiselessly. Some embodiments combine external and internal shock absorbers, with friction bearing contacts. An optional motion dampening component can additionally absorb shock.
Abstract:
A locking mechanism of a braking device for aluminum doors and window according to the invention includes a sleeve and a locking pillar. The sleeve is a hollow tube-shaped structure, which has an expanded projecting rim at an upper end surface thereof, and a fastening mechanism below the projecting rim. The locking pillar has a fastening section at an outer wall thereof for corresponding with the fastening mechanism of the sleeve to accommodate the locking pillar in the sleeve and to further accommodate the sleeve in a through opening at a supporting window frame of a casement, thereby locating a securing section of the sleeve to the through opening at an upper board of the supporting window frame. Hence, the locking pillar is allowed with sliding movements in the sleeve without being bounced out or disengaged.
Abstract:
A brake assembly for locking a vertical or horizontal slidable sash window or door within a track of a frame is disclosed. The track has an elongated base and a pair of spaced apart, opposed sidewalls extending perpendicular from the base. Each sidewall has an inner shoulder spaced from and parallel to the base. The assembly has a slider body having a central opening extending from a front face of the body to a rear face of the body. The slider body has a side opening in each side of the slider body and being in communication with the central opening. A pair of brake members are provided wherein one brake member is slidably positioned within a respective one of the side openings. A cam has a rear face and a front face, and is adapted to receive a pivot member mounted on either the sash window or door. The cam is positioned in the central opening and is adapted to be rotatable within the opening by the pivot member. The cam, slider body and brake members include cooperative structure for converting rotary motion of the cam into radial movement of the brake members through the side openings and axial movement of the cam and slider body to lock the brake assembly within the track.
Abstract:
Damper for movable furniture parts with a housing and a cylinder disposed in the housing, in which a piston with a piston rod is movably supported therein, with at least one set of gears supported movably on the housing, via which the cylinder and/or a stop for the piston rod can be adjusted relative to the housing.
Abstract:
A damping device (100), in particular to dampen impacts of mobile parts in pieces of furniture, comprises: a casing (1) containing a viscous fluid; a piston (3) slidably mounted inside the casing (1) and defining inside the casing (1) two regions with variable volume, which are in fluid communication at at least one duct defined in the piston (3) and at an hollow space defined between the outer surface of the piston (3) and the inner surface of the casing (1). The damping device (100) is characterised in that the piston (3) comprises a floating shutter (5) suitable for closing the at least one duct defined in the piston (3) during the working stroke of the piston (3) and for opening the at least one duct defined in the piston (3) during the reset stroke of the piston (3). The damping device (100) allows a substantial reduction in the reset force of the piston (3) to be obtained maintaining a particularly simple structure and low manufacturing costs.
Abstract:
A damping device (100), in particular for damping impacts of mobile parts in pieces of furniture, comprises: a casing (1) wherein is defined an inner chamber containing a viscous fluid and substantially closed at one end through a cap (2); a piston (3) slidably mounted in the inner chamber; a stem (4) having a first end (4a) associated with the piston (3) and a second end (4b) projecting from the inner chamber. The damping device (100) is characterised in that the cap (2) comprises at least one floating gasket (28) slidably mounted in a cavity (24) defined in the cap (2), said floating gasket (28) defining a region with variable volume in the cavity (24) suitable for receiving the viscous fluid displaced into the inner chamber by the stem (4) during the movements of the piston (3). The cavity (24) defined in the cap (2) and the floating gasket (28) slidably mounted in it define a system for compensating the variation in volume available in the inner chamber to receive the viscous fluid, due to the insertion/removal of the stem (4).