Abstract:
A pulse detonation combustor includes at least one plenum located along the length of the pulse detonation combustor. The plenum can be located: 1) proximate an air valve; 2) between a fuel injection port and an ignition source; 3) downstream of both the fuel injection port and the ignition source; and 4) proximate an exit nozzle of the pulse detonation combustor. In addition, the pulse detonation combustor can have multiple plenums, for example, proximate the air valve and proximate the exit nozzle. The location and dimensions of the plenum can be selectively adjusted to control mechanical loading on the wall, the velocity of fluid flowing within the combustor, and the pressure generated by the pulse detonation combustor.
Abstract:
An engine contains a compressor stage, a plurality of pulse detonation combustors and a rotary inlet valve structure having a plurality of inlet ports through which at least air flows to enter the pulse detonation combustors during operation of the engine. Downstream of the pulse detonation combustors is a turbine stage. Further, the ratio of the pulse detonation combustors to the inlet ports is a non-integer.
Abstract:
The flow through the core of a hybrid pulse detonation combustion system is passed through a compressor and then separated into a primary flow, that passes directly to the combustor, and a bypass flow, which is routed to a portion of the system to be used to cool components of the system. The bypass flow is routed to a nozzle of the pulse detonation combustor. The flow is then passed back into the primary flow through the core downstream of where it was extracted.
Abstract:
A detonation chamber and a pulse detonation combustor including a detonation chamber, wherein the detonation chamber includes a plurality of initiation obstacles and at least one injector in fluid flow communication with each of the plurality of initiation obstacles. The plurality of initiation obstacles are disposed on at least a portion of an inner surface of the detonation chamber with each of the plurality of initiation obstacles defining a low pressure region at a trailing edge. The plurality of initiation obstacles are configured to enhance a turbulence of a fluid flow and flame acceleration through the detonation chamber. The at least one injector in provides a cooling fluid flow to each of the plurality of initiation obstacles, wherein the cooling fluid flow is one of a fuel, a combination of fuels, air, or a fuel/air mixture.
Abstract:
A rotating valve assembly includes an inner cup having at least one inlet port; an outer cup having at least one inlet port, the outer cup rotatably mounted concentric with the inner cup by a bearing arrangement; and a cooling system located between the inner cup and the bearing arrangement for providing a thermal barrier between the inner cup and the bearing arrangement. The valve assembly also includes a labyrinth sealing arrangement located around the at least one inlet port of one of the inner and outer cups for preventing leakage of pressure waves generated by detonations or quasi-detonations within a combustion chamber of the inner cup.
Abstract:
According to one aspect of the invention, a pulse detonation combustor chamber is provided having an ignition chamber and a detonation chamber. The cross-sectional area of the ignition chamber is greater than the cross-sectional area of the detonation chamber. A flame is generated in the ignition chamber upon ignition of a flammable mixture. The flame flows into the detonation chamber and detonates within the detonation chamber.
Abstract:
A pulse detonation device for dividing a pulse detonation shock wave into an primary and control portion to reduce the strength of a propagating shock wave and/or change its direction. The device contains a flow separator which directs a portion of the shock wave into itself, thus reducing the shock wave's strength. In one configuration, the control region converges in cross-sectional area so as to accelerate the flow in the control region, while the primary region diverges to slow the flow in the primary region. The flow in the control region is directed, at an angle, into the flow of the primary region to impede and/or redirect the flow of the primary region.
Abstract:
An engine contains a compressor stage, a plurality of pulse detonation combustors and a plurality of inlet valves, where the inlet valves direct a mass flow into the pulse detonation combustors. A control system controls at least one of a phase shift, firing frequency and a τopen/τcycle ratio of the pulse detonation combustors based on a mass flow and/or a resonance within the engine.
Abstract:
A pulse detonation combustor (PDC) assembly includes an upstream chamber forming an inlet plenum, a downstream chamber including a downstream portion of at least one PDC tube, and an integrated PDC head coupled to the upstream chamber and the downstream chamber. The integrated PDC head is configured to facilitate fuel injection and ignition within the PDC tube. The PDC tube includes an inner seal surface and an outer seal surface configured to mate with the inner seal surface, wherein the inner seal surface includes an elevated section thereon that engages with the outer seal surface such that the PDC tube is free to partially pivot about a longitudinal axis thereof.
Abstract:
A ground based power generation system contains at least two compressor stages, a combustion stage and a turbine stage. An intercooler is positioned between the two compressor stages and a regenerator is positioned between the compressor stages and the combustion stage. The combustion stage contains at least one of a pulse detonation combustor and constant volume combustor. Downstream of the combustion stage is the turbine stage. Heat for the regenerator is supplied from the turbine stage. Further, a bypass flow device is included which re-directs flow upstream of the combustion stage to downstream of the combustion stage and upstream of the turbine stage.