THICK PLATES MADE OF AL-CU-LI ALLOY WITH IMPROVED FATIGUE PROPERTIES

    公开(公告)号:US20240035138A1

    公开(公告)日:2024-02-01

    申请号:US18448998

    申请日:2023-08-14

    CPC classification number: C22F1/057 C22C21/12 C22C21/14 C22C21/16 C22C21/18

    Abstract: The invention relates to a rolled product having a thickness of at least 50 mm made of aluminium alloy comprising, in % by weight, 2.2% to 3.9% of Cu, 0.7% to 1.8% of Li, 0.1% to 0.8% of Mg, 0.1% to 0.6% of Mn; 0.01% to 0.15% of Ti, at least one element chosen from Zn and Ag, the amount of said element, if it is chosen, being 0.2% to 0.8% for Zn and 0.1% to 0.5% for Ag, optionally at least one element chosen from Zr, Cr, Sc, Hf, and V, the amount of said element, if it is chosen, being 0.04% to 0.18% for Zr, 0.05% to 0.3% for Cr and for Sc, 0.05% to 0.5% for Hf and for V, less than 0.1% of Fe, less than 0.1% of Si, the remainder being aluminium and inevitable impurities, having a content of less than 0.05% each and 0.15% in total; characterized in that its granular structure is predominantly recrystallised between ¼ and ½ thickness. The invention also relates to the process for manufacturing such a product. The products according to the invention are advantageously used in aircraft construction, in particular for the production of an aircraft wing spar or rib.

    ALUMINUM-COPPER-LITHIUM ALLOY THIN SHEETS WITH IMPROVED TOUGHNESS, AND PROCESS FOR MANUFACTURING AN ALUMINUM-COPPER-LITHIUM ALLOY THIN SHEET

    公开(公告)号:US20220349040A1

    公开(公告)日:2022-11-03

    申请号:US17778179

    申请日:2020-11-30

    Abstract: The invention relates to a method for manufacturing a thin sheet made from aluminum-based alloy comprising, as % by weight, 2.2 to 2.7% Cu, 1.3 to 1.6% Li, less than 0.1% Ag, 0.2 to 0.5% Mg, 0.1 to 0.5% Mn, 0.01 to 0.15% Ti, a quantity of Zn of less than 0.3, a quantity of Fe and of Si of less than or equal to 0.1% each, and unavoidable impurities with a content of less than or equal to 0.05% by weight each and 0.15% by weight in total, the remainder aluminum, wherein optionally the hot-rolling input temperature being between 400° C. and 460° C. and the hot-rolling output temperature being less than 300° C. and the mean heating speed during the solution heat treatment is at least approximately 17° C./min between 300° C. and 400° C., aging conditions such that the yield strength in the long-transverse direction Rp0.2 is between 350 and 380 MPa.

    DEVICE FOR TRAPPING HYDROGEN
    54.
    发明申请

    公开(公告)号:US20220340999A1

    公开(公告)日:2022-10-27

    申请号:US17615922

    申请日:2020-06-03

    Abstract: Liquid metal degassing device comprising a chamber containing a liquid metal bath, a device for circulating a gas through a purification chamber and in that the purification chamber comprises a getter material configured to trap dihydrogen from the circulating gas. Method for degassing a liquid metal bath to reduce the hydrogen concentration of the liquid metal comprising the following steps a) Preparing a liquid metal bath, preferably an aluminum alloy b) Circulating a gas, c) Exchanging hydrogen from the circulating gas with the liquid metal such that the hydrogen dissolved in the liquid metal bath diffuses into the circulating gas and enriches the circulating gas with dihydrogen, d) Purifying the circulating gas enriched with dihydrogen in a purification chamber comprising a getter material configured to trap dihydrogen from the circulating gas.

    METAL SHEET MADE OF HIGH-STRENGTH 2XXX ALLOY FOR AN AIRCRAFT FUSELAGE

    公开(公告)号:US20210388470A1

    公开(公告)日:2021-12-16

    申请号:US17284373

    申请日:2019-10-07

    Abstract: The invention relates to a thin metal sheet which is made of an alloy based on substantially recrystallized aluminum and which has a thickness of 0.25 to 12 mm, the alloy comprising, in percent by weight, Cu 3.4-4.0; Mg 0.5-0.8; Mn 0.1-0.7; Fe #0.15; Si #0.15; Zr #0.04; Ag #0.65; Zn #0.5; inevitable impurities #0.05 each and #0.15 in total, the remainder consisting of aluminum. The invention also relates to a process for manufacturing such a metal sheet and to the use thereof as a fuselage panel or sheet metal for the production of composite products such as fiber metal laminates (FML) for wing or fuselage applications in the aeronautical industry.

    THIN SHEETS MADE OF ALUMINIUM-COPPER-LITHIUM ALLOY FOR AIRCRAFT FUSELAGE MANUFACTURE

    公开(公告)号:US20210363623A1

    公开(公告)日:2021-11-25

    申请号:US16972236

    申请日:2019-05-29

    Inventor: Pablo LORENZINO

    Abstract: The invention concerns a method for manufacturing a thin sheet made of aluminium-based alloy comprising, in percent by weight, 2.3 to 2.7% Cu, 1.3 to 1.6% Li, 0.2 to 0.5% Mg, 0.1 to 0.5% Mn, 0.01 to 0.15% Ti, a quantity of Zn less than 0.3, a quantity of Fe and of Si less than or equal to 0.1% each, and unavoidable impurities at a content less than or equal to 0.05% by weight each and 0.15% by weight in total, wherein, in particular, the hot-rolling input temperature is between 400° C. and 445° C. and the hot-rolling output temperature is less than 300° C. The sheets according to the invention have advantageous mechanical properties and are used, in particular, for the manufacture of aircraft fuselage panels.

    METHOD FOR PRODUCING SHEET INGOTS BY VERTICAL CASTING OF AN ALUMINIUM ALLOY

    公开(公告)号:US20210220905A1

    公开(公告)日:2021-07-22

    申请号:US16096780

    申请日:2017-05-17

    Abstract: A method for casting a metal alloy in an ingot mold extending along a vertical axis, the horizontal section of the ingot mold being parallelepiped in shape. During casting, a travelling alternating magnetic field is applied to a liquid phase of the alloy, the magnetic field having a maximum amplitude propagating along an axis of propagation. Under the effect of the magnetic field, a Lorentz force is applied to the liquid phase of the alloy, such that a Lorentz force of maximum intensity propagates along the axis of propagation. The method includes modulating the maximum intensity of the Lorentz force propagating along the axis of propagation. This modulation is obtained by varying, over time, one or more parameters, referred to as force parameters, governing the Lorentz force. An ingot obtained by the method is also described.

Patent Agency Ranking