Abstract:
The invention relates to a product based on an aluminium alloy comprising, as percentages by weight, 4.0 to 4.6% by weight of Cu, 0.7 to 1.2% by weight of Li, 0.5 to 0.65% by weight of Mg, 0.10 to 0.20% by weight of Zr, 0.15 to 0.30% by weight of Ag, 0.25 to 0.45% by weight of Zn, 0.05 to 0.35% by weight of Mn, at most 0.20% by weight of Fe+Si, at least one element selected from Cr, Sc, Hf, V and Ti, the amount of said element, if selected, being from 0.05 to 0.3% by weight for Cr and for Sc, 0.05 to 0.5% by weight for Hf and for V and 0.01 to 0.15% by weight for Ti, the other elements being at most 0.05% by weight each and 0.15% by weight in total, the remainder being aluminium. The invention also relates to a method for obtaining such a product and to the use thereof as an aircraft structural element.
Abstract:
The invention relates to a manufacturing method in which an alloy is prepared that comprises 3.5 to 4.7 wt % of Cu; 0.6 to 1.2 wt % of Li; 0.2 to 0.8 wt % of Mg; 0.1 to 0.2 wt % of Zr; 0.0 to 0.3 wt % of Ag; 0.0 to 0.8 wt % of Zn; 0.0 to 0.5 wt % of Mn; at most 0.20 wt % of Fe+Si; optionally an element selected from Cr, Sc, Hf and V, the amount of said element, if selected, being from 0.05 to 0.3 wt % for Cr and for Sc, 0.05 to 0.5 wt % for Hf and for V; the other elements being at most 0.05 wt % each and 0.15 wt % in total, a refiner is introduced, the alloy is cast in a crude form, homogenized, hot-worked, solution heat-treated, quenched, cold-worked, and tempered, in which the refiner contains particles of TiC and/or the cold working is between 8 and 16%. The products obtained by the method according to the invention have an advantageous compromise between mechanical strength and toughness.
Abstract:
The invention relates to an extrados structural element made from an aluminum, copper and lithium alloy and a method for manufacturing same. In the method according to the invention, an alloy with composition (in wt %) 4.2 to 5.2 Cu, 0.9 to 1.2 Li, 0.1 to 0.3 Ag, 0.1 to 0.25 Mg, 0.08 to 0.18 Zr, 0.01 to 0.15 Ti, optionally up to 0.2 Zn, optionally up to 0.6 Mn, an Fe and Si content level less than or equal to 0.1% each, and other element with a content level less than or equal to 0.05% each and 0.15% in total, the aluminum is poured, homogenized, deformed hot and optionally cold, placed in a solution at a temperature of at least 515° C., pulled from 0.5 to 5% and annealed. The combination in particular of the magnesium, copper and manganese content with the temperature in solution can reach a very advantageous elasticity under compression limit. Thus, the products according to the invention having a thickness of at least 12 mm have an elasticity under compression limit in the longitudinal direction of at least 645 MPa and an elongation in the longitudinal direction of at least 7%.
Abstract:
The invention relates to a method for manufacturing an aluminium alloy product including the steps of: creating a bath of liquid metal in an aluminium-copper-lithium alloy, casting said alloy by vertical semi-continuous casting so as to obtain a plate with thickness T and width W such that, during solidification, the hydrogen content of said liquid metal bath (1) is lower than 0.4 ml/100 g, the oxygen content above the liquid surface (14, 15) is less than 0.5% by volume.