Abstract:
A method and apparatus for supporting a multicast/broadcast in a wireless communication system are provided. A multicast/broadcast method receives an Internet Protocol (IP) packet from an upper layer, determines whether a multicast destination address or a broadcast destination address is contained in the received IP packet, and transmits a packet in which a connection identifier (CID) for the multicast or the broadcast is selectively attached to the received IP packet according to a result of the determination. Also, the multicast/broadcast method may receive an IP packet from a mobile station, determine whether a first CID for the multicast or the broadcast is contained in the received IP packet, and transmit a packet in which the first CID of the received IP packet is selectively replaced with a second CID according to a result of the determination.
Abstract:
A mobile network is disclosed in which there exists a Mobile Node (MN), the MN is managed by a first Access Router (AR), and there exists a second AR with a subnet different from the first AR. A method is provided for the MN performing a fast handoff from the first AR to the second AR, which includes receiving a Routing Advertisement (RA) message of the second AR from the first AR, generating an IP address to be used in the second AR using the RA message of the second AR if the MN recognizes that it should perform a handoff from the first AR to the second AR, performing a trigger for using the generated IP address if the movement to the second AR is completed, and transmitting/receiving a Correspondent Node (CN) and data using the IP address.
Abstract:
A handoff apparatus and method in FMIPv6 for seamless TCP packet transmissions. The handoff method includes steps of intercepting by a previous access router certain TCP packets sent from a correspondent node to a previous temporary address of a mobile node; and creating a TCP ACK by the previous access router in response to the certain TCP packets and sending by the previous access router the created TCP ACK to the correspondent node every time the certain TCP packets are forwarded to a new access router through a bi-directional tunnel. The handoff method has an advantage in that the packet transmission rate can be secured at the same level as the mobile node stays still during the performance of the handoff of the mobile node since the previous access router instead of the mobile node creates and sends the TCP ACK to the correspondent node during the performance of the handoff of the mobile node.