Abstract:
An optical filter includes a body of a polyhedron structure in which a recess having a predetermined depth from one side surface is exposed on a front surface and a rear surface and a multi-layer thin film which is deposited on the front surface of the body to cover an exposed portion of the recess of the body.
Abstract:
Disclosed are a flip-chip bonding structure for improving the vertical alignment of an optical device relative to a PLC and a flip-chip bonding method for achieving this structure. The flip-chip bonding structure includes: a semiconductor substrate; a lower-clad layer formed on the upper surface of the semiconductor substrate, wherein the lower-clad layer is depressed on a designated area for mounting an optical device; vertical alignment structures formed on a part of the upper surface of the depressed area of the lower-clad layer and determining a vertical alignment position of the optical device on the semiconductor substrate; electrodes formed on another part of the upper surface of the depressed area of the lower-clad layer; a solder bump formed on the upper surfaces of the electrodes; and, an optical device bonded to the substrate by a flip-chip bonding method using the solder bump.
Abstract:
Disclosed are a flip-chip bonding structure for improving the vertical alignment of an optical device relative to a PLC and a flip-chip bonding method for achieving this structure. The flip-chip bonding structure includes: a semiconductor substrate; a lower-clad layer formed on the upper surface of the semiconductor substrate, wherein the lower-clad layer is depressed on a designated area for mounting an optical device; vertical alignment structures formed on a part of the upper surface of the depressed area of the lower-clad layer and determining a vertical alignment position of the optical device on the semiconductor substrate; electrodes formed on another part of the upper surface of the depressed area of the lower-clad layer; a solder bump formed on the upper surfaces of the electrodes; and, an optical device bonded to the substrate by a flip-chip bonding method using the solder bump.
Abstract:
To provide a rigid digitizer-integrated display module, the display module includes a display panel for forming an image, a digitizer module formed on the bottom side of the display panel to detect electromagnetic type digitizer input, and a non-magnetic metal structure enclosing the bottom sides of the mold frame and the digitizer and the outer periphery of the mold frame.
Abstract:
A magnetic field shielding layer that does not affect an operation of a geo-magnetic sensor in a pointing input device of a touch screen type using an electromagnetic pen is provided. A magnetic field shielding layer is composed of magnetic metal powder. The magnetic field shielding layer is formed directly on the pointing input device without a need for a separate adhesive layer.
Abstract:
An electromagnetic sensing apparatus is provided for a touch screen having a display and a soft key. The electromagnetic sensing apparatus includes a Printed Circuit Board (PCB) including a display area corresponding to the display and a sub-area corresponding to the soft key, a controller including channels, which controls electromagnetic sensing of the electromagnetic sensing apparatus, and a plurality of loop units that extend from the channels and output current induced by an electromagnetic field. At least one of the plurality of loop units includes a first sub-loop arranged in the display area and a second sub-loop arranged in the sub-area. At least one of the plurality of loop units includes a first sub-loop arranged in the display area and does not include a second sub-loop.
Abstract:
An illumination apparatus includes at least one light source for outputting light, a light guide for guiding light input from the at least one light source through multiple reflections in the light guide, at least one groove formed on the light guide to reflect incident light, and a light extraction pattern formed on a surface of the light guide to output the incident light to an exterior of the light guide.
Abstract:
A method and apparatus for driving an ElectroPhoretic Display (EPD) are provided, in which upon sensing a request for displaying data in a gradual graphic representation scheme, a plurality of segments for displaying the data are determined, a display changing order of the segments is determined, an inter-segment time interval is calculated, driving voltage pulses are applied to a first segment according to the display changing order, and driving voltage pulses are applied to each of the other segments at the inter-segment time interval after driving voltage pulses are applied to a previous segment according to the display changing order.
Abstract:
A keypad includes an elastic layer for providing a restoring force to the keypad and an electric paper on the elastic layer, in which a plurality of key button regions for providing symbols in the form of images are defined. A keypad assembly includes a keypad, which has an elastic layer for providing a restoring force to the keypad and an electric paper on the elastic layer, in which a plurality of key button regions for providing symbols in the form of images are defined, and a switch board under the keypad for converting a pressure applied by a user to the key button region into an electric contact.
Abstract:
A keypad assembly includes a light guide plate adapted to transmit light and comprising a supporting portion and an elastic portion made of different material than material of the supporting portion, at least one key button disposed on the side of the light guide plate where a first surface of the light guide plate is located, and at least one reflection pattern locally formed on the light guide plate and adapted to reflect light transmitted into the light guide plate toward the key button. The elastic portion is disposed below the key button.