摘要:
The present invention provides a nonaqueous electrolytic solution exhibiting excellent electrical capacity, long-term cycle property, and storage property in a charged state; and a lithium secondary battery using the nonaqueous electrolytic solution.The nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent, comprises 0.001% to 5% by weight of a tin compound represented by the following general formula (I) and/or (II), on the basis of the weight of the nonaqueous electrolytic solution: R1R2R3Sn-MR4R5R6 (I) where R1 to R3 each represent a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or an aryloxy group; R4 to R6 each represent a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, or an aryl group; M represents Si or Ge; and SnX2 (II) where X represents β-diketonate.
摘要:
A non-aqueous electrolytic solution containing a ketone compound having the formula (I): in which each of R1 and R2 is linear or branched alkyl; and each of R3, R4, R5 and R6 is hydrogen or linear or branched alkyl; however, R1 and R4 can be combined to form a cycloalkanone ring in conjunction with a propanone skeleton to which R1 and R4 are connected, and two or more of alkyl of R2, alkyl of R5, a branched chain of alkyl of R1, and a branched chain of alkyl of R4 can be combined to form a cycloalkane ring, or alkyl of R1 and alkyl of R2 and/or alkyl of R4 and alkyl of R5 can be combined to each other to form a cycloalkane ring, is favorably employed for manufacturing a lithium secondary battery that is excellent in the battery performances and cycle performance.
摘要:
A non-aqueous electrolyte secondary battery has a high initial capacity and excels in cycle characteristics and storage characteristics even when charged until the potential of the positive electrode active material exceeds as high as 4.3V versus lithium. The non-aqueous electrolyte of the secondary battery contains both 1,3-dioxane and a sulfonic acid ester compound.
摘要:
A nonaqueous electrolytic solution for a lithium secondary battery, in which 0.01 to 10 wt. % of a sulfur-containing acid ester and 0.01 to 10 wt. % of a triple bond-containing compound are dissolved in a nonaqueous solvent, and a lithium secondary battery employing the nonaqueous electrolytic solution.
摘要:
The invention provides a lithium secondary battery which is excellent in long-term cycle property and in battery characteristics, such as electric capacity and storage property, and a nonaqueous electrolytic solution usable for such a lithium secondary battery. The present invention relates to a lithium secondary battery including a positive electrode, a negative electrode, and a nonaqueous electrolytic solution containing an electrolyte salt dissolved in a nonaqueous solvent, characterized in that the positive electrode is made of a material including a lithium compound oxide, in that the negative electrode is made of a material including graphite, and in that the nonaqueous electrolytic solution contains dialkyl oxalate and further contains vinylene carbonate and/or 1,3-propanesultone, and a nonaqueous electrolytic solution for use in such a battery.
摘要:
A nonaqueous electrolyte secondary battery including a negative electrode containing a graphite material as the negative active material, a positive electrode containing lithium cobalt oxide as a main component of the positive active material and a nonaqueous electrolyte solution, the battery being characterized in that the lithium cobalt oxide contains a group IVA element and a group IIA element of the periodic table, the nonaqueous electrolyte solution contains 0.2-1.5% by weight of a sulfonyl-containing compound and preferably further contains 0.5-4% by weight of vinylene carbonate.
摘要:
The present invention provides an apparatus and method for efficiently running an execution image containing instructions for running a computer program in a set-top box. A non-volatile memory stores a compressed version of the execution image. A volatile memory is configured to execute the execution image. A computing unit transfers and decompresses the compressed version of the execution image from the non-volatile memory to the volatile memory where the execution image in non-compressed form can be executed efficiently.