Abstract:
The invention relates to interference cancellation in a receiver in a radio system. The receiver receives at least two input data signals, and extracts an interference estimate signal specific to each input data signal. An interference estimate signal covariance matrix is calculated, and autoregressive parameters and covariance parameters are estimated from the covariance matrix. Interference is canceled from the at least two input data signals by finite impulse response filters using the estimated parameters as filter coefficients in the finite impulse response filters.
Abstract:
The invention relates to a multiplexing method and a transceiver used in a TDMA radio system. The transceiver sets up a connection to another transceiver by transmitting modulated signals in time slots. The transceiver comprises coding means for channel-coding a signal that consists of bits and that is formed into a communication signal, and interleaving means for interleaving the bits of the channel-coded Signal into blocks of a predetermined size. The transceiver also comprises multiplexing means that receive blocks from the interleaving means and that multiplex the interleaved blocks of at least two channel-coded signals together. The transceiver further comprises modulation means for modulating the blocks multiplexed by the multiplexing means with at least four-level modulation before the modulated signal blocks are transmitted as a communication signal in a time slot, so that the transmission speed of the communication signal and the number of the connections to be established can be increased.
Abstract:
The invention relates to a method for parameter estimation in a digital radio system receiver, and a receiver. The receiver comprises a detector generating a number describing the probability of a received symbol using soft decision metrics. Mean values of the numbers describing the received symbol probability by which an estimator generates a new channel estimate are generated. As the energy of different symbols varies the channel estimate to be generated is weighted by the symbol energy to be generated. The channel estimate change can be attenuated by averaging or by multiplying the change by a weighting value. The channel estimate of the invention can also be used in the estimation of other data communication parameters whereby, for example, the Doppler error can be corrected.
Abstract:
In a mobile communication system, signals which are transmitted from mobile stations moving relative to a base station are subject to a Doppler effect. A technique is described for compensating for that Doppler effect in the received signal, depending on the channel conditions for the received signal. Thus, the Doppler shift compensation is implemented only or mainly in good enough channel conditions.
Abstract:
An error control apparatus and method is disclosed, wherein a control message is used to request a retransmission of a received erroneous digital signal transmitted in a first direction via a transmission medium. The control message is transmitted in a second direction of said transmission medium, wherein the transmission rate of the control method is controlled in dependence on a usage of the transmission medium in the second direction and/or an amount of available memory in a receiving means (5) for receiving said digital signal. Thereby, the overall data throughout in the first and second direction can be optimized by changing the rate of the control message.
Abstract:
The invention relates to a method and arrangement for modulating a signal to be transmitted, the arrangement comprising an encoder and a frequency modulator. In order to enable high rate transmission in a flexible manner in a narrow frequency band, the encoder (104) is a differential encoder and before the frequency modulator, the arrangement comprises means for multiplying the signal to be transmitted by a factor of the form &pgr;/(2m), where m is a positive integer greater than one.
Abstract:
The invention relates to a receiving method in a digital cellular radio system. The invention further relates to a receiver of the cellular radio network. In computing the signal to noise ratio, a reference signal is utilized which is the convolution of the estimated impulse response of a channel and the predetermined sequence. The signal to noise ratio is obtained as a ratio between the variance of the reference signal and the predetermined sequence received from the channel. The signal to noise ratio is used for weighing the diversity branches of the diversity receiver.
Abstract:
A method for testing an integrated circuit that has a testing portion for testing the circuit card and/or other circuits connected to the integrated circuit after the integrated circuit has been assembled onto the circuit card, inputs for controlling the testing portion, and test structures for testing the internal operations of the integrated circuit. To keep the number of the inputs to the circuit low, a test mode is defined for the testing portion, in which test mode one of the inputs of the testing portion is connected to the test structures for the internal operations of the integrated circuit, and when the internal operations of the integrated circuit are tested, the testing portion is set in the test mode, whereupon the internal test structures of the integrated circuit can be controlled from the input of the testing portion.
Abstract:
A method of reducing the peak-to-mean ratio of a multi-carrier signal includes the steps of: generating a residual signal from the multicarrier signal, the residual signal representing the difference between the multicarrier signal and a hard-clipped multicarrier signal. The method also includes the steps of applying a least squares function to the residual signal for each carrier of the multi-carrier signal, thereby generating a minimized residual signal for each carrier and combining the minimized residual signals and the multicarrier signal.
Abstract:
The invention relates to a method of estimating a noise and interference covariance matrix and to a receiver. The method comprises: estimating an initial noise and interference covariance matrix on the basis of a received signal; reducing the impact of the background noise of the receiver from the initial noise and interference covariance matrix for obtaining a residual matrix; accepting the obtained residual matrix when the residual matrix is at least approximately positive semidefinite; modifying the obtained residual matrix such that the positive semidefinity of the residual matrix is achieved when the residual matrix is not at least approximately positive semidefinite; and adding the impact of background noise back to the residual matrix for estimating a final noise and interference covariance matrix.