Abstract:
A passive linear encoder includes a loop and a sensor. The loop is configured to engage print media and to move in concert with, and under power of, the print media. The sensor is positioned to scan indicia defined on an inner surface of the loop.
Abstract:
A print medium with encoded data and a print media detection system for use in detecting at least one characteristic of the sheet of print medium based on the encoded data are disclosed. The encoded data is designed to minimize its visual perceptibility. The print media detector is designed to recognize various characteristics of print media based upon the encoded data and transmit information regarding these characteristics to a printing device so that one or more operating parameters of the printing device can be adjusted to help optimize print quality for the particular characteristics of a particular print medium. A printing device including the print medium and print media detection system is also disclosed. A method of detecting one or more characteristics of print media used in a printing device is additionally disclosed. Further characteristics and features of the print medium, print media detection system, printing device, and method are described herein, as are examples of various alternative embodiments.
Abstract:
A system for ink short protection for signaling to inkjet printheads includes a differential signaling driver having a first and a second terminal, a differential signaling receiver having a first and a second terminal, a first capacitor in series between the first terminals, a second capacitor in series between the second terminals, and circuitry for reducing charge accumulation on the capacitors. A method for ink short protection and a printing mechanism having such an ink short protection system are also provided.
Abstract:
Overall print quality is improved via a method whereby an actual image is printed, a virtual image is defined based on image data, and the actual and virtual images are compared to identify a printhead error pattern which may be used to correct subsequent printing errors. This typically is accomplished via a system which employs an optical device which views an actual image to produce optical data, and a controller which derives a virtual image from image data provided to the printhead. The controller then compares the actual and virtual images to identify an error pattern, and modifies subsequent image data to compensate for perceived errors.
Abstract:
A print media preheating method and apparatus uses heat, vacuum, and mechanisms for drying and flattening a sheet prior to ink-jet printing thereon. Pre-shrinking the media, driving out and substantially reducing inherent moisture content prior to depositing wet ink thereon provides greater flatness in the print-zone whereby ink-jet print quality is improved.
Abstract:
A print medium with encoded data and a print media detection system for use in detecting at least one characteristic of the sheet of print medium based on the encoded data are disclosed. The encoded data is designed to minimize its visual perceptibility. The print media detector is designed to recognize various characteristics of print media based upon the encoded data and transmit information regarding these characteristics to a printing device so that one or more operating parameters of the printing device can be adjusted to help optimize print quality for the particular characteristics of a particular print medium. A printing device including the print medium and print media detection system is also disclosed. A method of detecting one or more characteristics of print media used in a printing device is additionally disclosed. Further characteristics and features of the print medium, print media detection system, printing device, and method are described herein, as are examples of various alternative embodiments.
Abstract:
Printing apparatus that employs a media detect switch and a linear optical detector to accurately detect the leading edge or trailing edge of a print medium to modify print data so that printing does not extend off the print medium beyond the leading edge or trailing edge. Also disclosed are techniques for using the media detect switch to control a media advance operation to position the leading edge or trailing edge of the print medium in the field of view of the linear array optical detector.
Abstract:
A monitoring system monitors a pressure wave developed in the surrounding ambient environment during inkjet droplet formation. The monitoring system uses either acoustic, ultrasonic, or other pressure wave monitoring mechanisms, such as a laser vibrometer, an ultrasonic transducer, or an accelerometer sensor, for instance, a microphone to detect droplet formation. One sensor is incorporated in the printhead itself, while others may be located externally. The monitoring system generates information used to determine current levels of printhead performance, to which the printer may respond by adjusting print modes, servicing the printhead, adjusting droplet formation, or by providing an early warning before an inkjet cartridge is completely empty. During printhead manufacturing, an array of such sensors may be used in quality assurance to determine printhead performance. An inkjet printing mechanism is also equipped for using this monitoring system, and a monitoring method is also provided.
Abstract:
Anisotropic thermal conditioning of print media is provided for liquid colorant printing, such as in ink-jet hard copy apparatus, by establishing discrete temperature zones across a platen surface. Heat transfer mechanisms associated with individually selectable heater elements rapidly establish substantially uniform temperature profiles in each zone.
Abstract:
A printing device, inductive heating device, and method are disclosed. An embodiment of the printing device includes a printing mechanism for printing an image on a print medium, a metal belt for transporting the print medium, and an induction heater positioned adjacent the metal belt, the induction heater being configured to induce an alternating current in an area of the metal belt adjacent the induction heater, the alternating current uniformly heating the area of the metal belt adjacent the induction heater. An embodiment of the inductive heating device includes a power source and a coil coupled to the power source to produce a varying magnetic field around the coil and positioned adjacent the metal belt to induce an alternating current in an area of the metal belt through which the varying magnetic field passes, the alternating current uniformly heating the area of the metal belt. An embodiment of the method includes generating a varying magnetic flux through an area of the metal belt, inducing an alternating current in the area of the metal belt through which the magnetic flux passes, and uniformly heating the area of the metal belt through which the magnetic flux passes. Further characteristics and features of the printing device, inductive heating device, and method are disclosed herein.