Abstract:
The present invention relates to an image sensor and to an imaging system comprising such a sensor. According to the invention, the overall conversion curve describing the conversion between photon flux and digital number comprises a first region in which the conversion is essentially linear and a second region in which the conversion is essentially non-linear. According to the invention, the non-linearity of the second region is obtained by operating the photodiode of the image sensor in its non-linear range and by changing the gain associated with the conversion between pixel voltage and digital number.
Abstract:
The disclosed embodiments include an image sensor and a method to manufacture thereof. In one embodiment, the method includes forming a plurality of semiconductor slices having a uniform width, at least two of the semiconductor slices having different lengths, and each of the semiconductor slices having a slice edge defining a side of the semiconductor slice. The method further includes arranging the semiconductor slices to form a semi-rectangular shape defining boundaries of the image sensor, each of the semiconductor slices being disposed proximate to another semiconductor slice of the plurality of semiconductor slices. Forming each semiconductor slice includes forming a plurality of pixel arrays over the semiconductor slice, the pixel arrays having an approximately uniform pixel pitch, and forming a seal ring around the semiconductor slice, the seal ring enclosing the semiconductor slice and the pixel arrays of the semiconductor slice, and each semiconductor slice having a different seal ring.
Abstract:
The present invention relates to an image sensor system. The invention further relates to an X-ray imaging system comprising such an image sensor system. More in particular, the present invention is related to image sensor systems that use a relatively small pixel width.According to the present invention, the conversion unit comprises, for each column of pixels, a load that comprises a toggling unit configured for toggling a predefined number of bits in response to the clock signal. Furthermore, the load and binary counter are operable in a counting mode, in which mode the binary counter increases the binary count value in dependence of the clock signal and the load does not toggle, and in a non-counting mode, in which mode the binary counter has stopped counting and the load toggles said predefined number of bits in dependence of the clock signal. The predefined number corresponds to the average number of bits that toggle in the binary counter per counting step while the binary counter is in the counting mode.
Abstract:
The present invention relates to an image sensor and to an X-ray system comprising such image sensor. More in particular, the invention relates to an image sensor wherein dose sensing pixels are used in conjunction with artificial pixels to sense a dose of incoming light or radiation.According to the invention, the image sensor comprises one or more shielded photo-sensitive pixels that are shielded for incoming photons and which are each configured for outputting a further reference voltage, wherein the input voltage of the artificial pixels is set in dependence on the outputted further reference voltage(s).
Abstract:
An x-ray detector comprises: a housing, including a cover removably fastened on a flange of a flanged base and forming a semi-hermetic seal therebetween, the flanged base including a bottom surface and the flange surrounding a perimeter of the bottom surface; and an x-ray imager positioned on the bottom surface, the x-ray imager including a scintillator and an image sensor, wherein the seal semi-hermetically encloses the x-ray imager in the housing, and is positioned nonadjacently to surfaces in contact with the x-ray imager. In this way, a simpler and less costly seal for a digital x-ray panel can be provide; furthermore, the seal is reusable and resealable, facilitating repair and refurbishment of the device.
Abstract:
The radiation detector (10) comprises a scintillator (15) having a first refractive index (ns) for converting incident radiation (RR) received at a first side (S1) of the radiation detector (10) into converted radiation (CR), a photosensor (20) for receiving the converted radiation (CR) from the scintillator (15), and an optical coating layer (25) arranged between the scintillator (15) and the photosensor (20). The scintillator (15) has regions (RR) arranged for being imaged, when impinged by the incident radiation (RR), onto corresponding regions of the photosensor (20). The optical coating layer (25) has a second refractive index (no) lower than the first refractive index (ns) for reflecting the converted radiation (CR) resulting from the incident radiation (RR) impinged on a particular region (A1) of the scintillator (15) and received by a region (A3) of the optical coating layer (25) corresponding to a photosensor region different from the imaged one (A2).
Abstract:
The disclosed embodiments include an image sensor and a method to manufacture thereof. In one embodiment, the method includes forming a plurality of semiconductor slices having a uniform width, at least two of the semiconductor slices having different lengths, and each of the semiconductor slices having a slice edge defining a side of the semiconductor slice. The method further includes arranging the semiconductor slices to form a semi-rectangular shape defining boundaries of the image sensor, each of the semiconductor slices being disposed proximate to another semiconductor slice of the plurality of semiconductor slices. Forming each semiconductor slice includes forming a plurality of pixel arrays over the semiconductor slice, the pixel arrays having an approximately uniform pixel pitch, and forming a seal ring around the semiconductor slice, the seal ring enclosing the semiconductor slice and the pixel arrays of the semiconductor slice, and each semiconductor slice having a different seal ring.
Abstract:
A moisture protection structure (10) used to protect a device (15) against moisture penetration. The device (15) has a first area (A1) at a first side (S1) for emitting or receiving radiation (RE;RR). The device (15) has a second side (S2) opposite to the first side (S1) attached to a supporting means (20). A lateral side (LS) of the device (15) is defined between a first perimeter delimiting the first area (A1) on the first side (S1) and a second perimeter delimiting a second area (A2) on the second side (S2). The moisture protection structure (10) includes at least one moisture-resistant layer (25) deposited on the first area (A1) and the lateral side (LS) of the device (15) and a moisture-resistant cover (30) arranged to cover the at least one moisture-resistant layer (25) at the first side (S1). The moisture-resistant cover (30) and the at least one moisture-resistant layer (25) are transparent for the emitting or receiving radiation (RE;RR). The moisture protective structure (10) further includes a pressurizing member (55;57;59) attached to the supporting means (20). The pressurizing member (55;57;59) includes an elastic deformable material (40;42) and it is arranged to exert a pressure on the moisture-resistant cover (30) towards the second side (S2) of the device (15). The pressure on the moisture-resistant cover (30) ensures that the first side (S1) of the device (15) is sealed against moisture penetration.