Abstract:
An offset sequence generator generates an offset sequence from a reference sequence, the offset sequence being a cyclic-shifted version of the reference sequence. The reference sequence is a deBruijn sequence formed from a pseudo-noise (PN) sequence augmented with an insert-bit, the insert-bit being inserted at a rollover state of the PN sequence. The offset generator includes a decision circuit that selects values of either the reference sequence or a delayed reference sequence as an input to a mask circuit. The mask circuit applies masks so as to generate the PN sequence of the offset sequence. The decision circuit also detects the rollover state of the PN sequence of the offset sequence, and inserts the insert-bit so as to provide the offset sequence.
Abstract:
An N-stage finite impulse response (FIR) filter embodying the invention includes a first filter section whose filter coefficients are made either 1 or zero (rather than 1 and −1) in order to produce a first output (i.e., C1) and a second filter section for producing a second output (i.e., C2), which when combined (added to or subtracted from) with the first output produces an output function (i.e., Cn) which is equal to that produced by an N-stage FIR filter implementing filter coefficients having a value of either 1 or −1. In a preferred embodiment, the first filter section computes the function C1 = ∑ k = 0 N - 1 y ( n - k ) · x ( k ) + 1 2 ; and the second filter section computes the function C2 = ∑ k = 0 N - 1 y ( n - k ) . The functions C1 and C2 may be combined to produce an output function equal to 2[C1−(½)C2] or 2C1−C2.
Abstract:
An apparatus and method for generating a sine wave signal for a desired phase input. The sine wave signal is generated by implementing a linear expansion of the sine function. An incoming phase value is divided into a base phase value and an incremental phase value. The sine value for each base phase value is stored in a look-up table. The sine values for phase values falling between base phase values are generated using a linear expansion of the sine function.
Abstract:
A convolutional encoding apparatus and method for encoding input data with bits stored in a shift register. A predetermined set of coefficient values is provided to define a coefficient mask value. It is then determined whether the bit of the input data is one of a logical zero and a logical one. Only if the bit of the input data is a logical one, the coefficient mask value and the shift register value are combined to produce a next shift register value. Predetermined ones of the bits of the next shift register value are then selected as coded output data.