Abstract:
An amorphous silicon layer and at least a heat-retaining layer are formed on a substrate in turn. Wherein, the heat-retaining layer is controlled to have an anti-reflective thickness for reducing the threshold laser energy to effect the melting of the amorphous silicon layer. Then, a laser irradiation process is performed to transform the amorphous silicon layer into a polycrystalline silicon layer. During the laser irratiation process, a portion of the laser energy transmits the heat-retaining layer to effect the melting of the amorphous silicon layer, and another portion of the laser energy is absorbed by the heat-retaining layer.
Abstract:
A method for planarizing polysilicon comprises providing a substrate, forming a dielectric layer on the substrate, forming an amorphous silicon film on the dielectric layer, etching the amorphous silicon film to remove native oxide formed on a surface of the amorphous silicon film, exposing the surface of the amorphous silicon film to a first radiation source to polycrystallize the amorphous silicon film into a polysilicon film, etching the polysilicon film to remove weak bonded silicon formed on a surface of the polysilicon film, and exposing the surface of the polysilicon film to a second radiation source to reflow the polysilicon film.
Abstract:
A tire parameter sensing system (12) for a vehicle (10) having a plurality of tires (16, 18, 20, 22) comprises a plurality of tire-based units (34, 36, 38, 40). Each tire-based unit (34, 36, 38, 40) being configured to receive initiation signals and, in response thereto, to transmit response signals (54, 56, 58, 60). A vehicle-based unit (42) receives the response signals (54, 56, 58, 60) and transmits the initiation signals (90). A plurality of signal masking devices (44, 46, 48, 50) is coupled to the vehicle-based unit (42). The signal masking devices (44, 46, 48, 50) have associated tire locations on the vehicle (10) and are actuatable for masking the initiation signals (90) near the associated tire locations. The vehicle-based unit (42) controls the signal masking devices (44, 46, 48, 50) so as to control the tire location from which a tire-based unit responds to the initiation signals (90).
Abstract:
An amorphous silicon layer is formed on a substrate, and then a protective layer and a reflective layer are formed in turn to form a film stack on portions of the amorphous silicon layer. The reflective layer is a metal material with reflectivity of laser, and the protective layer is able to prevent metal diffusion. When an excimer laser heats the amorphous silicon layer to crystallize the amorphous silicon, nucleation sites are formed in the amorphous silicon layer under the film stack of the protective layer and the reflective layer. Next, laterally expanding crystallization occurs in the amorphous silicon layer to form poly-silicon having crystal grains with size of micrometers and high grain order.
Abstract:
A circuit (14) for use in a tire (16) of a vehicle (10) having a tire parameter sensing system (12) includes a battery (60) for supplying electrical energy. The battery (60) has an equivalent series resistance (64) that varies inversely with temperature. The circuit (14) further includes a current control device (90) that is responsive to at least one of an output voltage of the battery and temperature for adjusting a current draw from the battery (60) to insure a predetermined minimum output voltage from the battery (60).