Abstract:
An acoustic fingerprint imaging system having a plurality of acoustic elements, each acoustic element including a transducer, and independent drive and sense circuitry is disclosed. Drive circuitry may require higher voltage than low voltage sense circuitry. Many embodiments described herein include a ground shifting controller to apply a voltage bias to the low voltage sense circuitry during a drive operation, in order to prevent electrical damage to the sense circuitry.
Abstract:
A finger biometric sensing device may include drive circuitry for generating a drive signal and an array of finger biometric sensing pixel electrodes cooperating with the drive circuitry and generating a detected signal based upon placement of a finger adjacent the array. The detected signal may include a drive signal component and a sense signal component superimposed thereon. A gain stage may be coupled to the array and drive signal nulling circuitry may be coupled to the gain stage for reducing the drive signal component from the detected signal. The drive signal nulling circuitry may include a first digital-to-analog converter (DAC) generating an inverted scaled replica of the drive signal for the gain stage. Error compensation circuitry includes a memory storing error compensation data and a second DAC coupled in series with the first DAC compensating an error in the inverted scaled replica based upon the error compensation data.
Abstract:
An authentication device may include a housing and a finger sensor carried by the housing and including first processing circuitry and a finger sensing area coupled thereto. The first processing circuitry may be configured to generate finger image data based upon a finger positioned adjacent the finger sensing area, and generate and store a first template based upon the finger image data. The authentication device may include second processing circuitry carried by the housing and configured to obtain the finger image data from the first processing circuitry. The second processing circuitry may be configured to generate a second template based upon the finger image data. The first processing circuitry may further be configured to obtain the second template from second processing circuitry, and validate the second template against the first template.
Abstract:
An electronic device may include a finger biometric sensor that includes an array of electric field sensing pixels and image data output circuitry coupled thereto and capable of processing the image data from each of sub-arrays of the array of electric field sensing pixels. The electronic device may also include a dielectric layer over the array of electric field sensing pixels and causing electric field diffusion so that the image data output circuitry generates image data corresponding to a blurred finger image. The electronic device also includes deblurring circuitry coupled to the image data output circuitry and capable of processing the image data from each of the plurality of sub-arrays of the array of electric field sensing pixels to produce processed image data representative of a deblurred finger image.
Abstract:
An electronic device may include a finger biometric sensor that includes an array of electric field sensing pixels and image data output circuitry coupled thereto and capable of processing the image data from each of sub-arrays of the array of electric field sensing pixels. The electronic device may also include a dielectric layer over the array of electric field sensing pixels and causing electric field diffusion so that the image data output circuitry generates image data corresponding to a blurred finger image. The electronic device also includes deblurring circuitry coupled to the image data output circuitry and capable of processing the image data from each of the plurality of sub-arrays of the array of electric field sensing pixels to produce processed image data representative of a deblurred finger image.
Abstract:
A finger biometric sensor may include first and second integrated circuit (IC) dies arranged in a stacked relation. The first IC die may include a first semiconductor substrate and an array of finger biometric sensing pixels thereon, and the second IC die may include a second semiconductor substrate and processing circuitry thereon coupled to the array of finger biometric sensing pixels. The first and second IC dies may each have respective first and second non-rectangular shapes, such as circular shapes that are coextensive.
Abstract:
A finger biometric sensing device may include drive circuitry capable of generating a drive signal and an array of finger biometric sensing pixel electrodes cooperating with the drive circuitry and capable of generating a detected signal based upon placement of a finger adjacent the array of finger biometric sensing pixel electrodes. The detected signal may include a relatively large drive signal component and a relatively small sense signal component superimposed thereon. The finger biometric sensing device may also include a gain stage coupled to the array of finger biometric sensing pixel electrodes, and drive signal nulling circuitry coupled to the gain stage capable of reducing the relatively large drive signal component from the detected signal.
Abstract:
A finger biometric sensing device may include drive circuitry for generating a drive signal and an array of finger biometric sensing pixel electrodes cooperating with the drive circuitry and generating a detected signal based upon placement of a finger adjacent the array. The detected signal may include a drive signal component and a sense signal component superimposed thereon. A gain stage may be coupled to the array and drive signal nulling circuitry may be coupled to the gain stage for reducing the drive signal component from the detected signal. The drive signal nulling circuitry may include a first digital-to-analog converter (DAC) generating an inverted scaled replica of the drive signal for the gain stage. Error compensation circuitry includes a memory storing error compensation data and a second DAC coupled in series with the first DAC compensating an error in the inverted scaled replica based upon the error compensation data.
Abstract:
A finger biometric sensor may include first and second integrated circuit (IC) dies arranged in a stacked relation. The first IC die may include a first semiconductor substrate and an array of finger biometric sensing pixels thereon, and the second IC die may include a second semiconductor substrate and processing circuitry thereon coupled to the array of finger biometric sensing pixels. The first and second IC dies may each have respective first and second non-rectangular shapes, such as circular shapes that are coextensive.
Abstract:
An electronic device includes a biometric sensing device connected to a processing channel that includes at least one amplifier having a gain. One or more processing devices is operatively connected to the biometric sensing device and adapted to compensate for signal fixed pattern noise in signals received from the processing channel. The signal fixed pattern noise can include signal measurement variation noise and gain variation noise. The biometric sensing device captures a new image or data, and at least one processing device compensates for the signal fixed pattern noise in the newly captured image or data.