摘要:
The present invention is a system and method for statistical or probabilistic static timing analysis of digital circuits, taking into account statistical delay variations. The delay of each gate or wire is assumed to consist of a nominal portion, a correlated random portion that is parameterized by each of the sources of variation and an independent random portion. Arrival times and required arrival times are propagated as parameterized random variables while taking correlations into account. Both early mode and late mode timing are included; both combinational and sequential circuits are handled; static CMOS as well as dynamic logic families are accommodated. The timing analysis complexity is linear in the size of the graph and the number of sources of variation. The result is a timing report in which all timing quantities such as arrival times and slacks are reported as probability distributions in a parameterized form.
摘要:
Solutions for ordering of statistical correlated quantities are disclosed. In one aspect, a method includes timing a plurality of paths in an integrated circuit to determine a set of timing quantities associated with each of the plurality of paths; determining a most critical timing quantity in the set of timing quantities; forming a tiered timing quantity arrangement for ordering a plurality of timing quantities in the set of timing quantities; removing the most critical timing quantity from the set of timing quantities and placing the most critical timing quantity in an uppermost available tier of the tiered timing quantity arrangement; and repeating the determining, forming and removing for the set of timing quantities excluding the removed most critical timing quantity.
摘要:
Techniques for improving parametric chip yield of manufactured chips are provided. In one aspect, a method for optimizing parametric chip yield is provided. The method includes the following steps. Parametric chip yield is computed based on performance and power consumption of a plurality of manufactured chips subject to a given voltage binning scheme. It is then determined whether the parametric chip yield computed is optimal. If the parametric chip yield is not optimal, the voltage binning scheme is altered and the compute and determine steps are repeated. Otherwise the binning scheme is left unaltered.
摘要:
In one embodiment, the invention is a method and apparatus for incrementally computing criticality and yield gradient. One embodiment of a method for computing a diagnostic metric for a circuit includes modeling the circuit as a timing graph, determining a chip slack for the circuit, determining a slack of at least one diagnostic entity, and computing a diagnostic metric relating to the diagnostic entity(ies) from the chip slack and the slack of the diagnostic entity(ies).
摘要:
A method is provided for memory conservation in statistical static timing analysis. A timing graph is created with a timing run in a statistical static timing analysis program. A plurality of nodes in the timing graph that are candidates for a partial store and constraint points are identified. Timing data is persistently stored at constraint points. The persistent timing data is retrieved from the constraint points and used to calculate intermediate timing data at the plurality of nodes during timing analysis.
摘要:
A method of evaluating an integrated circuit design selects manufacturing parameters of interest which are outside of manufacturing specification limits. Then, the method runs timing tests on the integrated circuit design and successively evaluates the timing test results in an iterative process that considers the timing performance sensitivity to the selected manufacturing parameters of interest. The design is made more robust to each parameter out of manufacturing range.
摘要:
A method and system for decreasing processing time in multi-corner static timing analysis. In one embodiment, parameters are ordered in a parameter order by decreasing magnitude of impact on variability of timing. In one example, a decreasing parameter order is utilized to order slack cutoff values that are assigned across a parameter process space. In another example, a decreasing parameter order is utilized to perform a multi-corner timing analysis on one or more dependent parameters in an independent fashion.
摘要:
A method for verifying whether a circuit meets timing constraints by performing an incremental static timing analysis in which slack is represented by a distribution that includes sensitivities to various process variables. The slack at an endpoint is computed by propagating the arrival times and required arrival times of paths leading up to the endpoint. The computation of arrival and required arrival times needs the computation of delays of individual gate and wire segments in each path that leads to the endpoint. The mixed mode adds a deterministic timing to the statistical timing (DSTA+SSTA).
摘要:
In one embodiment, the invention is a method and apparatus for static timing analysis in the presence of a coupling event and process variation. One embodiment of a method for computing a statistical change in delay and slew due to a coupling event between two adjacent nets in an integrated circuit design includes conducting a statistical timing analysis of the integrated circuit design, computing a statistical overlap window between the adjacent nets, where the statistical timing window represents a period of time during which signals on the adjacent nets can switch contemporaneously and computing the statistical change of delay due to the coupling event, in accordance with the statistical overlap window.
摘要:
A method and system for decreasing processing time in multi-corner static timing analysis. In one embodiment, slack cutoff values are assigned across a parameter process space. For example, a slack cutoff value is assigned to each parameter in a process space by determining an estimated maximum slack change between a starting corner and any other corner in a corresponding process sub-space. In another embodiment, parameters are ordered in a parameter order by decreasing magnitude of impact on variability of timing.