Abstract:
A touch display screen and a method for forming the same are provided, which are related to the touch technology. The touch display screen includes a touch screen, a display screen and a buffer layer. The buffer layer is on lateral surfaces of the touch screen and encircles the touch screen.
Abstract:
Embodiments of the present disclosure provide an electromagnetic capacitive touch screen. According to one embodiment, the electromagnetic capacitive touch screen comprises: a display module, a capacitive module that comprises a plurality of capacitive induction units, and an electromagnetic module that comprises a plurality of electromagnetic induction units comprising a plurality of electromagnetic induction lines, wherein the capacitive module and the electromagnetic module are located on the same layer.
Abstract:
The present invention provides a touch substrate comprising a plurality of capacitive touch driving electrodes extending in a row direction, a plurality of capacitive touch sensing electrodes extending in a column direction, a plurality of first pressure sensitive electrodes extending in the row direction and a plurality of second pressure sensitive electrodes extending in the column direction, the capacitive touch driving electrode and the capacitive touch sensing electrode are insulated from each other, the first pressure sensitive electrode is insulated from the capacitive touch sensing electrode and the capacitive touch driving electrode, the second pressure sensitive electrode is insulated from the capacitive touch sensing electrode and the capacitive touch driving electrode, when the touch substrate is touched, a voltage corresponding to a pressure at a touch position is generated between the first pressure sensitive electrode and the second pressure sensitive electrode corresponding to the touch position.
Abstract:
The present invention provides a touch substrate, a manufacturing method thereof, and a display device. In the touch substrate of the present invention, first leads of a first-layer structure are connected with first patterns in a second-layer structure via first via holes, second leads of the first-layer structure are connected with second patterns in the second-layer structure via second via holes, and the first patterns and the second patterns produce mutual capacitance. Each first pattern comprises a plurality of branches radiating from the center to the circumference, each second pattern surrounds one first pattern in a mutually separated manner, and when the touch substrate is used for flexible display, the second patterns can cover the whole bent surface, so that when a user touches any place of the touch substrate, the touch substrate can quickly respond and blind spots cannot be formed.
Abstract:
A touch panel, a manufacturing method thereof and a display device are disclosed. The touch panel includes a first sensing layer (10) and a second sensing layer (11) which are superimposed. The first sensing layer includes a plurality of columns of first sensing lines (12); each first sensing line is formed by the alternate series connection between first transparent electrodes (1) and first metal wires (2); the second sensing layer includes a plurality of rows of second sensing lines (34); each second sensing line is formed by the alternate series connection between second transparent electrodes (3) and second metal wires (4); in terms of vertical projections of the first sensing layer and the second sensing layer on a plane of the touch panel, the first transparent electrodes (1) and the second transparent electrodes (3) are alternately arranged along the column direction and the row direction; the first metal wires (2) and the second metal wires (4) are alternately arranged along the column direction and the row direction; the first metal wire (2) crosses over the second transparent electrode (3); and the second metal wire (4) crosses over the first transparent electrode (1). The touch panel can solve the Moiré problem.
Abstract:
An array substrate includes connecting leads, a signal channel region extending in a first direction, a first power voltage lead, and a second power voltage lead. Any one of the signal channel region includes at least two control region columns extending in the first direction, and any one of the control region columns includes a plurality of control regions arranged along the first direction. Any one of the control regions includes a pad connecting circuit and a first pad group for bonding a microchip, the first pad group is electrically connected to the first power voltage lead. The pad connection circuit includes a plurality of second pad groups, and is provided with a first end electrically connected to the first pad group, and a second end electrically connected to the second power voltage lead.
Abstract:
The present disclosure provides a thin film sensor and a method for preparing a thin film sensor. The thin film sensor includes: a base substrate; a first conductive mesh on the base substrate; where the first conductive mesh includes first metal wires arranged side by side along a first direction and each extending in a second direction, and second metal wires each extending in a third direction; and the first metal wires intersect with the second metal wires; and a second conductive mesh on a side of the first conductive mesh away from the base substrate; where the second conductive mesh includes first transparent conductive wires arranged side by side along the first direction and each extending in the second direction, and second transparent conductive wires each extending in the third direction; and the first transparent conductive wires intersect with the second transparent conductive wires.
Abstract:
Disclosed are a touch substrate and a preparation method thereof, and a touch apparatus. The touch substrate includes an electrostatic transmission layer, a first insulating layer, a first conductive layer, a second insulating layer, and a second conductive layer which are sequentially stacked, wherein the first conductive layer includes a first touch electrode, the second conductive layer includes a second touch electrode and a second dummy electrode which are insulated from each other, and the second dummy electrode is electrically connected to the electrostatic transmission layer by means of a via penetrating the first insulating layer and the second insulating layer; and/or, the first conductive layer further includes a plurality of first dummy electrodes insulated from one another, and the first dummy electrode and the first touch electrode are insulated from each other.
Abstract:
A light emitting substrate (100) and a display device are provided. The light emitting substrate (100) includes a light emitting region (110) and a border region (160). The light emitting substrate (100) includes a base (10), and a plurality of light emitting units (102) and a plurality of signal lines (30) located on the base (10). The light emitting units (102) are located in the light emitting region (110), and each includes a driving circuit (103) and at least one light emitting element (104). The plurality of light emitting units (102) are arranged into M rows along a first direction (D1) and into N columns along a second direction (D2) intersecting the first direction (D1). The plurality of signal lines (30) include N target signal lines (31) extending along the first direction (D1); the border region (160) includes a region of the light emitting substrate (100) located outside a first column of light emitting units (101), a region of the light emitting substrate (100) located outside an Nth column of light emitting units (101), and a region of the light emitting substrate (100) located outside a first row of light emitting units. A target signal line (31) for the first column of light emitting units (101) and/or the Nth column of light emitting units (101) include(s) a first extension section (311), a connection section (312) and a second extension section (313) connected in sequence. The first extension section (311) is connected with a driving circuit (103) and located in the border region (160). The first extension section (311), the connection section (312) and the second extension section (313) enclose a receiving region surrounding at least two groups of light emitting units (102).
Abstract:
The present disclosure relates to a method for fabricating a touch substrate, a touch substrate and a touch device. The method includes: forming, through a splicing exposure process, a first electrode layer including a metal strip in an edge region thereof and a first metal mesh pattern connected with the metal strip; forming, on one side of the first electrode layer and through a splicing exposure process, a second electrode layer including a metal strip in an edge region thereof and a second metal mesh pattern connected with the metal strip and insulated from the first metal mesh pattern, the metal strip of the first electrode layer directly contacting the metal strip of the second electrode layer to form a metal stack; and forming a wire electrically connected with one of the first and metal mesh patterns of the first and second electrode layers by using the metal stack.