Abstract:
A liquid crystal (LC) lens includes a first substrate, a second substrate and an LC layer interposed between the first substrate and the second substrate, a first electrode structure being disposed at a side of the first substrate adjacent to the LC layer; a second electrode structure being disposed at a side of the second substrate adjacent to the LC layer, at least one of the first electrode structure and the second electrode structure including a first bar electrode layer and a second bar electrode layer insulated from one another and include a plurality of first bar electrodes and a plurality of second bar electrodes, respectively; the first bar electrodes and the second bar electrodes are alternately arranged spatially, and orthographic projections of both of the first bar electrodes and the second bar electrodes on the first substrate and the second substrate are not overlapped.
Abstract:
A display panel and a display device are provided. The display panel includes a first substrate and a second substrate that disposed opposite to each other, and a first optical film that provided on a side of the first substrate facing the second substrate. The first optical film is provided with a plurality of nanoscale microstructures, so that the first optical film is capable of splitting incident white light into a plurality of monochromatic light beams with different colors.
Abstract:
The present invention relates to a display method of a display panel, a display panel and a display device, and the display method of a display panel is used for enabling each row of N pixel units in the display panel to display an image having 2N+x−1 pixel points. The display method comprises steps of: acquiring an image, each row of which comprises 2N+x−1 pixel points corresponding to the N pixel units; and determining a display parameter of each sub-pixel according to the components, which have the same color as the sub-pixel, in the pixel points corresponding to the sub-pixel.
Abstract:
A field-sequential display panel, a field-sequential display apparatus and a driving method are provided. The field-sequential display apparatus includes a liquid crystal display panel and an OLED light source arranged at one side of the liquid crystal display panel where light is incident to provide trichromatic light for pixel cells of the liquid crystal display panel. The OLED light source includes multiple groups of trichromatic light sources, each of the groups of trichromatic light sources includes a first color sub-light source, a second color sub-light source and a third color sub-light source, and each sub-light source includes an anode, a cathode and a light emitting layer between the anode and the cathode.
Abstract:
A fingerprint identifying device and a fingerprint identifying system are provided. The fingerprint identifying device including: a substrate; a transparent cover plate, located right above the substrate; a detection light source, located on a first side of the transparent cover plate; and a photoelectric sensor, located on a side of a lower surface of the transparent cover plate, wherein, a refractive index of the transparent cover plate is less than a refractive index of a skin of a human fingerprint part, the transparent cover plate has a side surface on the first side, and an angle between the side surface and an upper surface of the transparent cover plate is an acute angle, the detection light source is configured to provide a light beam towards the side surface of the transparent cover plate, so that the light beam is incident to the upper surface of the transparent cover plate through the side surface of the transparent cover plate, and the light beam is totally reflected on the upper surface of the transparent cover plate in a case that the upper surface of the transparent cover plate is in contact with air, the photoelectric sensor is configured to receive a light beam reflected from the upper surface of the transparent cover plate. The fingerprint identifying device is capable of improving the identifying accuracy thereof.
Abstract:
An optical fingerprint detection apparatus and a display device are disclosed. The optical fingerprint detection apparatus includes: a light source; a touch panel including a first surface and a second surface, the first surface being provided with at least one touch area, the second surface being configured for receiving the light beam emitted from the light source and angled with respect to the first surface by an angle of less than 90 degrees; and a detection unit located outside of the side of the touch panel opposite to the first surface and configured for receiving the light beam reflected by the touch area and emitted from the touch panel and detecting an intensity distribution of the received light beam.
Abstract:
The present invention provides a data acquiring module, comprising: a data input and output terminal, through which data enter into the data acquiring module, and which can output data independently; a shift register groups, each of which comprises (b−1) serially connected shift registers, and an output terminal of each shift register being able to output data independently, wherein a and b are integers greater than 1; and (a−1) serially connected first-in first-out memories connected to (a−1) shift register groups respectively, and the output terminal of each first-in first-out memory being able to output data independently, an input terminal of the last shift register in the shift register group without a corresponding first-in first-out memory in the a shift register groups, and the input terminal of the last first-in first-out memory of the serially connected first-in first-out memories being connected to the data input and output terminal. The present invention also provides a data processing unit, a driver and a display device.
Abstract:
Embodiments of the present disclosure relate to a pressure sensing structure, a pressure sensing panel and a pressure sensing display device. The pressure sensing structure includes a first electrode, a second electrode, a common electrode, a capacitance detection unit and a pressure grade identification unit; a first insulating layer is provided between the first and second electrodes, a second insulating layer is provided between the second electrode and the common electrode; the first and/or the second electrodes include a plurality of sub-electrodes which are separated from each other; a plurality of through holes are provided in the first insulating layer, a conductive sliding cylinder is provided in each of the through holes, the sliding cylinder is connected to the first electrode and spaced apart from the second electrode by a gap in an initial unstressed state, the sliding cylinder slides to the second electrode along the through hole when being subjected to a pressure, which results in a change in capacitance value between the first and second electrodes and in turn a change in a capacitance value between the first electrode and the common electrode, wherein the gap value between the slide cylinders in the plurality of through holes and the second electrodes are classified into a plurality of grades; the capacitance detection unit is connected with the first electrode and the common electrode respectively so as to detect the capacitance value between the first electrode and the common electrode; the pressure grade identification unit determines the grade of user's pressure according to the detected capacitance value.
Abstract:
The present disclosure provides a 3D display apparatus and a 3D display method. The apparatus includes: a display screen which includes a plurality of pixels; a grating arranged to overlap with the display screen and including a plurality of grating units which are configured to switch on or switch off; a location tracking module configured to detect a location of a viewer; a control module connected to the location tracking module, the display screen and the grating respectively, and configured to control some of pixels in the display screen to display a left eye image and to control the others of pixels in the display screen to display a right eye image on the basis of the location of the viewer, the control module also being configured to control some of the grating units in the grating to switch on to form bright grating units and to control the others of the grating units to switch off to form dark grating units such that the left eye image and the right eye image observed at the location do not interfere with each other.
Abstract:
An image display method is disclosed. The image display method is adapted to a delta pixel arrangement display device, and the delta pixel arrangement display device includes M×N second pixels arranged in form of an M×N matrix. The display method includes: acquiring raw data of a frame of image, the raw data including luminance information of a*M×b*N first pixels arranged in form of an a*M×b*N matrix, where a≧1, b≧1 and a×b≠1, the first pixels arranged in strip and the first pixel at least including sub-pixels with three different colors RGB; converting the raw data into display data, the display data including luminance information of M×N second pixels, and each of the second pixels at least comprising respective sub-pixels of corresponding one of the first pixels; and displaying an image according to the display data. An image display apparatus and a delta pixel arrangement display device are further disclosed.