Abstract:
A pivot structure assembly including a fixed cover and a hinge module is provided. The hinge module includes a torque element, a first shaft, a second shaft, a first bracket and a second bracket. The torque element is fixed on the fixed cover and has a first and a second axle sleeves, parallely disposed at two opposite sides of the torque element. The first shaft is disposed through the first axle sleeve, and the second shaft is disposed through the second axle sleeve. The first bracket is pivotally disposed on the torque element through the first shaft, and the second bracket pivotally disposed on the torque element through the second shaft. When the first and second brackets rotate relatively to the torque element, the first and second axle sleeves respectively provide different friction forces to the first and second shafts. In addition, an electronic device is also mentioned.
Abstract:
A hinge structure includes a first shaft, a second shaft, a pivot base and a position-limiting mechanism. The first and second shafts are pivoted on the pivot base. The position-limiting mechanism includes a first position-limiting portion, a second position-limiting portion and a position-limiting component. The first position-limiting portion is fixed to the first shaft. The second position-limiting portion is fixed to the second shaft. The position-limiting component is slidably disposed on the pivot base and has first and second ends opposite to each other. When the position-limiting component moves to a first position, the first end and the first position-limiting portion interfere with each other to stop the first shaft and the pivot base from rotating relatively. When the position-limiting component moves to a second position, the second end and the second position-limiting portion interfere with each other to stop the second shaft and the pivot base from rotating relatively.
Abstract:
A hinge structure includes a first shaft, a second shaft, a sliding component, a first pillar, and a second pillar. The second shaft is parallel to the first shaft. The sliding component includes a first sliding portion and a second sliding portion, wherein the first shaft and the second shaft are disposed through the first sliding portion and the second sliding portion respectively, and the first sliding portion has a first guiding slot and the second sliding portion has a second guiding slot. When the first shaft rotates with respect to the sliding component and moves the first pillar along the first guiding slot, the first pillar drives the sliding component to slide along the first and second shafts and move the second pillar along the second guiding slot, so as to drive the second shaft to rotate with respect to the sliding component.
Abstract:
A liftable slide cover mounting structure consisting of two hinges, two metal sheet bracket mechanism, two sliding rails, two gears, two gear racks and two supplementary support mechanisms. Subject to the use of the sheet plate bracket mechanisms to hold the sliding rails instead of zinc alloy sliding rail holders, the weight of the liftable slide cover mounting structure is minimized. Further, when the cover panel is opened from the base member, the sheet plate bracket mechanisms are forced into engagement with the supplementary support mechanisms to support the cover panel in position for enabling the user to operate the display screen of the cover panel positively.
Abstract:
A liftable slide cover mounting structure consisting of two hinges, two metal sheet bracket mechanism, two sliding rails, two gears, two gear racks and two supplementary support mechanisms. Subject to the use of the sheet plate bracket mechanisms to hold the sliding rails instead of zinc alloy sliding rail holders, the weight of the liftable slide cover mounting structure is minimized. Further, when the cover panel is opened from the base member, the sheet plate bracket mechanisms are forced into engagement with the supplementary support mechanisms to support the cover panel in position for enabling the user to operate the display screen of the cover panel positively.
Abstract:
This invention relates to a process for forming a lubricant layer of differing thickness on distinct zones of a maonetic disk of a hard disk drive without heating, inert gas plasma and UV-radiation or E-beam exposition. According to the present invention. an overcoat layer with distinct zones of differing thickness is first sputtered on the disk surface by using distinct masks under different sputtering conditions. A lubricant layer is then uniformly coated on the overcoat layer. Since a part of lubricant is bonded to the overcoat to form a bonded lubricant layer and the thickness of the bonded lubricant layer relates to the overcoat layer's property, a free lubricant layer with zoned thickness is consequently formed, which the free lubricant layer consists of the leftover lubricant. The zoned lubricant layer of the invention hence decreases the flying stiction.
Abstract:
A telescopic lighting structure includes a telescopic rod composed of a rod body and a detachable terminal rod. The terminal rod has a light-emitting module and a power switch. The light-emitting module and the power switch do not protrude beyond the surface of the terminal rod, thus the terminal rod can be completely retracted into the rod body, making it easy to store and protect the light-emitting module. A power supply assembly is provided inside the terminal rod. The power supply assembly controls the connection with the light-emitting module through the power switch. Through this structural design in which the power supply assembly, the light-emitting module and the power switch are arranged on the terminal rod, the telescopic rod can be stretched so that the light-emitting module has a higher lighting height. Further, the terminal rod can be removed to provide illumination alone, thereby increasing the scope of application.
Abstract:
A foldable electronic device including a first body having a first side and a second side, a second body rotatably connected to the first side of the first body, at least one sliding structure disposed in the first body and adjacent to the second side, a first screen rotatably connected to the second body and movably disposed at the at least one sliding structure, at least one hinge structure disposed in the first body and connected to the at least one sliding structure, and a second screen disposed at the at least one hinge structure and located at the second side is provided. The second body is adapted to rotate relative to the first body and driving the first screen to move along the at least one sliding structure to switch to a closed state or an unfolding state.
Abstract:
A synchronous hinge module includes a first axle, a second axle, a third axle, a fourth axle, at least one central frame, at least two connecting bases, a plurality of first baffle plates, at least two side frames, and a plurality of second baffle plates. The at least one central frame is disposed around the first axle and the second axle. The at least two connecting bases are engaged with two opposite ends of the at least one central frame respectively. The plurality of first baffle plates is respectively disposed around the first axle, the third axle and the second axle, the fourth axle. Each of the first baffle plates extends outside each of the at least two connecting bases and the at least one central frame.
Abstract:
A hinge structure connected between two bodies of an electronic device is provided. The bodies are rotated to be folded or unfolded relatively through the hinge structure. The hinge structure includes a first rotating shaft, a second rotating shaft, and a torsion member that the first and the second rotating shafts being pivoted thereto, such that the torsion member surrounds and grasps an axial surface of the first rotating shaft and an axial surface of the second rotating shaft respectively. The first rotating shaft has a first actuating portion and a second actuating portion. The second rotating shaft has a third actuating portion and a fourth actuating portion. The torsion member has a first torsion providing portion located on a moving path of the first and the second actuating portions and a second torsion providing portion located on a moving path of the third and the fourth actuating portions.