摘要:
A variable illuminator, for instance a device for scanning a beam of light, emits a selected amount of power to a plurality of spots across a field of view. The amount of power is determined as inversely proportional to the apparent brightness of each spot. In the case where the spot size is equal to pixel size, the device may operate with a non-imaging detector. In the case where pixel size substantially equals spot size, the output of the variable illuminator may be converged to produce a substantially uniform detector response and the image information is determined as the inverse of a frame buffer used to drive the variable illuminator. The illuminator and detector may be driven synchronously. In the case where an imaging detector is used, the variable illumination may be used to compress the dynamic range of the field of view to substantially within the dynamic range of the imaging detector.
摘要:
A scanned light display system includes a light emitter array having a plurality of light sources operable to emit diverging light and an array of collimating elements positioned so that each of the collimating elements receive at least a portion of the light emitted from a corresponding one of the light sources. Each of collimating elements is configured to substantially collimate the received light from at least one corresponding light source into respective beams. The scanned beam display is operable to scan the respective beams to provide an image to a viewer. The displayed image appears substantially fixed to a viewer as the viewer's eye moves relative to the array of collimating elements. In one embodiment, each of the collimating elements is a curved mirror. In other embodiments, each of the collimating elements includes at least one lens or a curved mirror/lens pair.
摘要:
An antenna structure including a driven antenna element is formed on a substrate that is folded to provide a closed surface, causing the substrate to be nonplanar and spacing the driven antenna element from a base of the substrate. Adhesives on an outside surface of the substrate permit fastening of the folded substrate to a container or packaging. The substrate may have one or more resilient elbows formed by folding, to bias the antenna element carrying portion of the substrate from the base of the substrate. A modulation circuit may drive the driven antenna element. The flexible substrate may be folded into any of a variety of forms such as a substantially O-shape, a substantially oval shape, a substantially coil shape, a substantially spiral shape, and a substantially S-shape. Additional folds in the substrate may provide surfaces for mounting passive or parasitic antenna elements, such as reflectors and directors, to form a Yagi antenna structure. A planar substrate carries a driven antenna element coupled to a driving circuit and at least one passive antenna element to form a directional antenna structure. The antenna structure may include additional passive antenna elements to enhance directionality. A computing system and printer are configured to determine the appropriate spacing and the form the antenna elements on the substrate.
摘要:
A noise cancellation apparatus provides an inexpensive mechanism that is readily adaptable for printers and other equipment and devices that are used in areas where external noise is undesirable. In an embodiment of the present invention, a thermal printer includes a transport mechanism for transporting a media through the thermal printer and a thermal print head for printing on the media. At least one sound emitter is provided for generating an inverse sound signal to cancel noise generated by at least one noise source in the thermal printer. At least one microphone is provided for receiving sound signals from the at least one noise source. Each microphone is connected to an inversion circuit which inverts the received sound signals. The inversion circuit sends the inverted sound signal to one of the sound emitters, which emits the inverted sound signal, canceling out the noise. To ensure a proper phase relationship between the inverted sound signal and the sound signals generated by the noise source, the sound emitter is placed as close as possible to the noise source. Further, a low pass filter is provided between the microphone and the inversion circuit to filter out noise having a frequency greater than c/2d, where c is the speed of sound and d is the distance between the emitter and the noise source. Sound dampening materials are disposed in the thermal printer to cancel out the remaining high frequency noise that is within the range of human hearing.
摘要:
A clamshell printer having a base and a cover pivotally mounted to the base for movement between an open and a closed position, wherein the open position provides unhindered access to a media path and a print head in the printer. The printer may include a platen formed integrally therein or a platen rollingly supported in the printer. A media supply, such as a continuous sheet of linerless thermal media in the form of a roll may be quickly and efficiently drop-loaded into the printer, with no threading of the media required. Unhindered access to the print head is also provided. The printer may or may not include a drive mechanism for advancing the media through the printer. The print head is controlled by a microprocessor mounted to a circuit board in the printer. The circuit board may be spring-biased to urge the print head toward a printing position, which is located at an effective printing distance from the media and the platen. A window may be formed in the printer for observing the media supply.
摘要:
A printhead having multiple print lines of conventional design and a printhead control system for using the multiple print lines in a variety of operations. In one embodiment, the printhead control system prints an image by superimposing the printing from multiple print lines. In another embodiment, the image is printed by alternating the energization of one print line so that each print line is used to print only 1/3 of the image lines. As a result, the print lines are allowed a relatively long time to cool, thus allowing the printhead to be operated at a faster speed. In another embodiment, the printing elements of each print line print with a different image density, and images printed by superimposing the printing elements in the print lines with a variety of combinations depending upon the desired magnitude of the image density. In still another embodiment of the printhead control system, the resistance of each printing element is checked and, if found to be unacceptably high, corresponding printing elements of other print lines are used for printing.
摘要:
A method and apparatus for maximizing print quality in a thermal printer uses a ribbon condition monitor to detect the condition of a multipass thermal ribbon. Data related to the condition of the thermal ribbon at each individual pixel is used to determine a custom energization signal for each thermal print element. In one embodiment, the system utilizes a history memory to track the prior heating history of each thermal print element and an ink memory to track the prior use of each location on the thermal print ribbon corresponding to the thermal print elements. The data from the history memory and the ink memory are combined to form an index to a table memory containing data corresponding to a plurality of energization signal levels for a particular print medium. The data in the table memory provides the custom energization signal for each of the thermal print elements. In an alternative embodiment, a light source and detector are used to determine the thickness of ink remaining on the thermal ribbon. The energization signal is adjusted to compensate for variations in the thickness of the thermal ribbon. In yet another embodiment, data is encoded at one end of a multipass thermal ribbon. The encoded data provides information related to the amount of usage of the thermal ribbon. The energization signal may be boosted for pixels along the edge of a graphic image so as to maximize the contrast of image edges. The system determines whether a particular pixel is located at the edge of a graphic image area and adjusts the energization signal correspondingly.
摘要:
A method and apparatus is provided for reading two-dimensional patterns, such as matrix symbols or signatures, using moving beam laser scanners to take advantage of the large depth of field inherent in laser scanners. A pixel generating element and a tracking element together create a digitized image of a target symbol by scanning a laser beam across the symbol. As the pixel generating element generates pixel data composing the digitized image, the tracking element tracks the position of the laser beam in the scanning pattern, and generates laser position data indicating the instantaneous position of the laser associated with particular pixels. The laser position data is then stored in a data memory in association with the generated pixel data, and a microprocessor utilizes the stored pixel data and laser position data to create an image of the target symbol.
摘要:
A thermal printhead formed on a substrate. The plurality of thermal print elements in the thermal printhead are formed in a linear array. Each of the plurality of thermal print elements is respectively connected to a plurality of common electrode traces and a plurality of ground electrode traces. The common electrode traces are switchably connected to a single common electrode and the ground electrode traces are connected to a single ground electrode. The common electrode is held at a common voltage and the ground electrode is held at a ground voltage. The electrical circuit includes at least one common remote sense electrode connected to the single common electrode and, optionally, at least one ground remote sense electrode connected to the single ground electrode.
摘要:
A thermal printhead for dissipating accumulated static electric charge. An electrically conducting outer layer is deposited over the surface of a thermal printhead that receives static charge from the passing print media or ribbon media. The layer, which can be a 100-angstrom-thick layer of chromium, is formed over a glass overglaze. If the surface overglaze is passivated, a 10-angstrom-thick activating primer layer is formed on the glass overglaze before the chromium layer is deposited. The conductive outer layer is connected to electrical ground to dissipate the static electric charge as it is generated.