Abstract:
An aircraft hybrid electrical system includes an electric power generating system in signal communication with a thermal combustion engine, a secondary power system in signal communication with the electric power generating system, and a battery in signal communication with the electric power generating system and the secondary power system. The aircraft hybrid electrical system further comprises a system controller in signal communication with the electric power generating system, secondary power system, and the battery. The system controller is configured to monitor a charge capacity of the battery and selectively operate in a current charge mode and a voltage charge mode to charge the battery. The system controller invokes the current charge mode in response to detecting the charge capacity falls below a charge capacity threshold, and invokes the voltage charge mode in response to detecting the charge capacity reaches a target value.
Abstract:
A hybrid electric aircraft powerplant arrangement can include a first wing pair of powerplants for a first wing of an aircraft, the first wing pair comprising a first electric powerplant configured to drive a first air mover and a first heat engine powerplant configured to drive a second air mover separate from the first air mover. The arrangement can include a second wing pair of powerplants for a second wing of the aircraft, the second wing pair comprising a second electric powerplant configured to drive a third air mover separate from the first and second air movers, and a second heat engine powerplant configured to drive a fourth air mover separate from the first, second, and third air movers.
Abstract:
A hybrid electric aircraft powerplant controller for controlling an engine and an electric motor-generator can include an engine recharging module. The engine recharging module can be configured to operate the engine to produce a desired output power to a propulsor and to produce additional power to drive the electric motor-generator to produce electrical output from the electric motor-generator to recharge an electrical storage device during at least one power setting and/or flight phase where the electric motor-generator is not driving the propulsor.
Abstract:
A cooling arrangement for an electrical machine includes a stator including a stack defining a rotation axis and windings in the stack extending parallel to the rotation axis and forming end windings where the windings wrap around opposing axial ends of the stack. A rotor is included radially inward from the stator, configured to rotate about the rotation axis relative to the stator. An annular cooling jacket is included radially outward from the end windings at one axial end of the stack. The cooling jacket is configured to circulate cooling fluid in an internal flow passage therein in a circumferential direction to carry heat away from the end windings.
Abstract:
A variable speed analog current (AC) generator system includes a main generator unit in electrical communication with a rotary transformer. The main generator unit outputs a main output power signal, and the rotary transformer adjusts a frequency of the main output power signal. The variable speed analog current (AC) generator system further includes an electronic exciter controller in electrical communication with the rotary transformer. The exciter controller is configured to determine a desired frequency of the main output power and apply an exciter signal having an adjustable exciter frequency to maintain the main output power signal at the desired frequency.
Abstract:
An aircraft engine assembly includes an engine housing, a low pressure spool disposed within the engine housing, and a high pressure spool disposed within the engine housing. Also included is a flux-switching machine disposed within the engine housing, the flux-switching machine comprising a rotor, a stator, a field winding and an armature winding, the flux-switching machine configured to generate power for the aircraft power system.
Abstract:
A hybrid power distribution system for an aircraft generates hydraulic power from one of a plurality of power sources based on which power source provides energy most efficiently. Power sources includes an electric power distribution bus that distributes electrical energy onboard the aircraft, a pneumatic distribution channel that distributes pneumatic energy onboard the aircraft, and mechanical power provided by one or more engines associated with the aircraft.