Abstract:
An alternator includes an exciter field device generating an exciter magnetic field in a first air gap, an exciter armature device configured to rotate with respect to the exciter magnetic field and impart a first voltage in a first set of coils at the first air gap, a main stator device including a second set of coils, and a rotor field device configured to be energized by the first current in the first set of coils and generate a main magnetic field that imparts a second voltage on the main stator device at a second air gap. The main stator device and the exciter field device lie in on a common plane normal to an axis of rotation, and the exciter armature device is inwardly spaced from the exciter field device, main stator device, and the rotor field device.
Abstract:
An alternator includes an exciter field device generating an exciter magnetic field in a first air gap, an exciter armature device configured to rotate with respect to the exciter magnetic field and impart a first voltage in a first set of coils at the first air gap, a main stator device including a second set of coils, and a rotor field device configured to be energized by the first current in the first set of coils and generate a main magnetic field that imparts a second voltage on the main stator device at a second air gap. The main stator device and the exciter field device lie in on a common plane normal to an axis of rotation, and the exciter armature device is inwardly spaced from the exciter field device, main stator device, and the rotor field device.
Abstract:
Embodiments herein relate to a permanent magnet (PM) dynamoelectric machine. The machine includes a drive shaft, a stator assembly having a ferromagnetic stator core, a plurality stator teeth mounted to the stator core with distal ends proximate the inner radial periphery of the stator assembly and a plurality of stator coils mounted between the stator teeth, and a PM rotor assembly with multiple PMs, a ferromagnetic rotor core, a plurality of ferromagnetic rotor teeth mounted to the rotor core with distal ends proximate an inner periphery of the stator assembly separated by an air gap, and at least one control coil, the at least one control coil wrapped about a saturable region of each the rotor teeth. Each saturable region of the rotor teeth is operable to divert air gap magnetic flux (Φg) generated by the PMs across the air gap through the distal ends of the rotor teeth.
Abstract:
In one embodiment, a generator includes a rotor configured to rotate in cooperation with a stator to generate electrical power. A sensor, which is supported by the rotor, is configured to generate a trigger signal indicative of a position of the rotor. A communication interface is configured to receive the trigger signal from the sensor of the rotor and receive data indicative of an output of the generator. A controller supported by the rotor or configured to perform a phase analysis of the trigger signal and the output of the generator and calculate a power angle for the generator based on the phase analysis.
Abstract:
An aircraft starting and generating system includes a starter/generator that includes a main machine, an exciter, and a permanent magnet generator. The system also includes an inverter/converter/controller that is connected to the starter/generator and that generates AC power to drive the starter/generator in a start mode for starting a prime mover of the aircraft, and that converts AC power, obtained from the starter/generator after the prime mover have been started, to DC power in a generate mode of the starter/generator. A main bridge gate driver is configured to drive a MOSFET-based bridge during start mode using Space Vector Pulse Width Modulation (SVPWM) and during generate mode using reverse conduction based inactive rectification.
Abstract:
The present disclosure relates to motor vehicles. The teachings thereof may be embodied in the operation and control of an externally excited electrical generator in an on-board electrical system of a motor vehicle. An example method may include: setting the excitation voltage within the scope of regulating an actual output voltage of the generator at a predetermined setpoint output voltage of the generator; evaluating load requirements of at least one peak load consumer supplied from the on-board electrical system; identifying exceptional situations based on the load requirements; and in the event of an exceptional situation, setting an associated temporary excitation output voltage of the generator.
Abstract:
A gas turbine power generation system is configured by a gas turbine, a main power generator which is coupled to a rotor of the gas turbine through a rotation shaft, a rotation rectifier which converts a three-phase AC current into a DC current and transfers the DC current to a field magnet winding wire of the main power generator, an AC exciter which is configured by an armature winding wire, a d-axis field magnet winding wire, and a q-axis field magnet winding wire, and transfers the three-phase AC current generated at the armature winding wire to the rotation rectifier, an excitation device which drives the AC exciter at the time of start-up of the main power generator, and an excitation power supply which supplies a current to the excitation device.
Abstract:
A separately excited synchronous machine (1b1k) with an excitation circuit on the side of the rotor includes an excitation winding (3) and a power supply for the excitation winding (3) as well as a switching element (8a, 8e) for connecting the power supply to the excitation winding (3). Further, the synchronous machine (1b1k) comprises a first stator-side primary winding (5a5f) and a first rotor-side secondary winding (6a6f). Moreover, the synchronous machine (1b1k) may comprise a) a tap of the first rotor-side secondary winding (6d) connected to a control element (9a, 9e) of the switching element (8a, 8e) or b) a second rotor-side secondary winding (14d), which is coupled to the first stator-side primary winding (5a5f) and connected to a control element (9a, 9e) of the switching element (8a, 8e).
Abstract:
A voltage regulator, an operation method thereof, and a voltage regulating system, and a mobile vehicle are provided. The voltage regulator coupled to an alternator and a battery includes a voltage detection unit which is coupled to the alternator and a startup assisting unit. The voltage detection unit operatively generates an enable signal responsive to an output voltage of the alternator. The startup assisting unit is coupled to the alternator, the battery, and the voltage detection unit. The startup assisting unit operatively generates a first exciting current to excite a rotor coil according to the enable signal. When the voltage detection unit detects that the output voltage is greater than a predetermined voltage threshold, the voltage detection unit outputs the enable signal causing the startup assisting unit to generate the first exciting current to the rotor coil, thereby facilitating the alternator to establish voltage under low rotational speed.
Abstract:
A control device for a separately excited rotor winding (LR) of a synchronous machine is described, which comprises a voltage source (2) connected to the rotor winding (LR) and intended for transmitting electrical energy (E) from a power supply (4) to the rotor winding (LR), in such a way that said rotor winding is caused to rotate by a rotating field on the stator side. According to the invention, the control device furthermore comprises a consumer (3) connected to the rotor winding (LR) and intended for transmitting electrical energy (E) from the rotor winding (LR) to the power supply (4). Furthermore, a method for controlling a separately excited rotor winding (LR) of a synchronous machine is described.