Abstract:
The embodiments of the present invention provide a decoding method and a decoding device for a polar code cascaded with CRC. The decoding method includes: performing SC-List decoding on a Polar code according to the number of survival paths L to obtain L survival paths, where L is a positive integer; performing cyclic redundancy check on the L survival paths respectively; and increasing the number of survival paths when all the L survival paths fail to pass the cyclic redundancy check, and acquiring a decoding result of the Polar code according to the increased number of survival paths. In the embodiments of the present invention, the path number of survival paths is adjusted according to a result of the cyclic redundancy check, so as to output paths as much as possible, where the output paths can pass the cyclic redundancy check, thereby improving decoding performance.
Abstract:
A data processing method, an apparatus, and a device are disclosed. The data processing method may be performed by a first communications device, and the first communications device is a transmit end of encoded data. The first communications device may send a high-order signal to a second communications device by using a plurality of parallel channels, and information bits in the parallel channels are arranged in a specified order. The method helps improve a transmission rate in a parallel channel transmission scenario, and helps the second communications device perform correct decoding.
Abstract:
The disclosure provides image encoding methods and apparatuses. One example encoding method includes: obtaining a one-dimensional sequence of quantized coefficients of an image; obtaining a run-length value sequence and a level value sequence based on the one-dimensional sequence of the quantized coefficients; obtaining an updated second distribution probability of each level value in the level value sequence based on the m first distribution probabilities, the n second distribution probabilities, and a preset mapping rule; and performing encoding based on the level value sequence and the updated second distribution probability of each level value in the level value sequence to obtain and output encoded image data.
Abstract:
Embodiments of the present application provide a method and an apparatus for generating a code word using a Polar code encoding manner. A sequence has N bits, in which K bits are information bits. A matrix of N rows×N columns is used for encoding the sequence. Each row of the matrix has a weight that equals to total number of non-zero elements in the row, and ith row of the matrix corresponds to ith bit position of the sequence, i=1, 2, . . . , N. Each bit position of the N-bit sequence has a reliability. The K bit positions of the sequence that are occupied by the K information bits are selected according to reliabilities of the bit positions of the sequence and weights of the rows of the matrix. The code word is generated by multiplying the sequence with the matrix.
Abstract:
A network device polar encodes data to obtain a first encoded bit sequence, wherein the first encoded bit sequence comprises: bits in even number locations in the first encoded bit sequence and bits in odd number locations in the first encoded bit sequence; then the device interleaves the first encoded bit sequence to obtain an interleaved bit sequence; finally, the device rate matches the interleaved bit sequence and outputs the bit sequence after rate matched, wherein bits in even number locations of the interleaved bit sequence are from the bits in even number locations of the first encoded bit sequence, bits in odd number locations of the interleaved bit sequence are from the bits in odd number locations of the first encoded bit sequence.
Abstract:
The present disclosure provides a coding method and a coding device. The coding method includes: coding information bits via cyclic redundancy check CRC, then inputting the bits coded via the CRC into an interleaver determined by a construction parameter of a Polar code, where the interleaver is configured to interleave the bits coded via the CRC and output interleaved bits; and coding the output interleaved bits via the Polar code to obtain a coded Polar code.
Abstract:
The present disclosure provides a coding method and a coding device. The coding method includes: coding information bits via cyclic redundancy check CRC, then inputting the bits coded via the CRC into an interleaver determined by a construction parameter of a Polar code, where the interleaver is configured to interleave the bits coded via the CRC and output interleaved bits; and coding the output interleaved bits via the Polar code to obtain a coded Polar code.
Abstract:
The present disclosure discloses a polar code rate matching method and apparatus and a wireless communications device that includes performing sorting processing on the first sequence Z according to a preset rule to determine a second sequence, wherein the first sequence Z is determined based on a Mersenne twister algorithm according to a code length of a target polar code, and interleaving the target polar code according to a mapping function to generate interleaved output bits, wherein the mapping function is determined according to the first sequence Z and the second sequence. A Mersenne twister algorithm is applied to target polar code rate matching such that a bit sequence obtained from the rate matching can be more even in structure, a frame error rate of a punctured polar code can be reduced, hybrid automatic repeat request (HARQ) performance can be improved, and further, communication reliability can be improved.
Abstract:
Embodiments of the present invention provide a polar code rate matching method and a polar code rate matching apparatus. The method includes: performing matrix-based BRO interleaving on a non-systematic polar code output by a polar code encoder, to obtain interleaved bits; and determining, based on the interleaved bits, a rate-matched output sequence. According to the embodiments of the present invention, matrix-based BRO interleaving is performed on a non-systematic polar code, to obtain a rate-matched output sequence, so that a sequence structure after interleaving is more random, which can reduce an FER, thereby improving HARQ performance and ensuring reliability of data transmission.
Abstract:
Embodiments of the present invention provide a method and an apparatus for generating a hybrid Polar code. The method includes: obtaining a first matrix of N×N and a sequence that includes N bits, N rows of the first matrix correspond to the N bits in the sequence in a one-to-one manner, and N is a positive integer; determining reliability of the N bits, and determining the weight of each row in the N rows of the first matrix; selecting, according to the reliability of the N bits and the weight of the N rows of the first matrix, K bits among the N bits as information bits, or selecting, according to the reliability of the N bits and the weight of the N rows of the first matrix, K rows of the first matrix to construct a second matrix of K×N used for encoding.