Abstract:
A procedure for measuring and adjusting an alignment of each axle of a trailer or semi-trailer while the trailer or semi-trailer is coupled to a tow vehicle by a hitch, tow bar, kingpin, or fifth wheel hitch. Measurements of the alignment of each axle of the trailer or semi-trailer are acquired from wheel-mounted sensor means utilizing either directly or indirectly a reference line of the trailer and an established reference point on the tow vehicle. A thrust angle of a first trailer or semi-trailer axle is referenced directly to the established reference line, while scrub angles associated with additional trailer or semi-trailer axles are referenced either directly or indirectly to the first trailer or semi-trailer axle, and indirectly to the established reference point. Any necessary adjustments are made to the first trailer or semi-trailer axle to bring the axle thrust angle to within a specification tolerance, and then to the scrub angle of each additional axle.
Abstract:
A machine vision vehicle wheel alignment system for acquiring measurements associated with a vehicle. The system includes at least one imaging sensor having a field of view and at least one optical target secured to a wheel assembly on a vehicle within the field of view of the imaging sensor. The optical target includes a plurality of visible target elements disposed on at least two surfaces in a determinable geometric and spatial configuration which are calibrated prior to use. A processing unit in the system is configured to receive at least two sets of image data from the imaging sensor, with each set of image data acquired at a different rotational position of the wheel assembly around an axis of rotation and representative of at least one visible target element on each of the two surfaces, from which the processing unit is configured to identify said axis of rotation of the wheel assembly.
Abstract:
A machine vision vehicle wheel alignment system for acquiring measurements associated with a vehicle. The system includes at least one imaging sensor having a field of view and at least one optical target secured to a wheel assembly on a vehicle within the field of view of the imaging sensor. The optical target includes a plurality of visible target elements disposed on at least two surfaces in a determinable geometric and spatial configuration which are calibrated prior to use. A processing unit in the system is configured to receive at least two sets of image data from the imaging sensor, with each set of image data acquired at a different rotational position of the wheel assembly around an axis of rotation and representative of at least one visible target element on each of the two surfaces, from which the processing unit is configured to identify said axis of rotation of the wheel assembly.
Abstract:
A method and apparatus for determining the alignment of a vehicle wheel using an optical target assembly secured to the vehicle wheel in a non-determined position, the optical target assembly having a dimensionally stable shape and a plurality of optical target elements disposed on a plurality of target surfaces. Images of the optical target elements are acquired by an imaging system, together with target identifying indicia, and utilized together with previously stored target characterization data to determine a spatial orientation of the optical target assembly and an alignment of the vehicle wheel onto which it is secured.
Abstract:
Methods and apparatus for a vehicle wheel alignment service procedure and an for acquisition of vehicle measurements, which imparts a gravity-induced rolling movement to a vehicle on a vehicle support structure to transition the vehicle from a first vehicle support surface over a descending roll ramp to a resting position on a second vehicle support surface.