Abstract:
Allocating resources during failure recovery is provided. A set of one or more service level agreement tiers are identified corresponding to a client workload that was being processed by a failed computing environment. A highest level tier is selected in the set of one or more service level agreement tiers. Recovery resources are allocated in a failover computing environment to the highest level tier sufficient to meet a service level agreement associated with the highest level tier. The highest level tier is recovered in the set of one or more service level agreement tiers using the recovery resources in the failover computing environment. In response to recovering the highest level tier, tier resources of the highest level tier are reduced to a steady state level of processing in the failover computing environment.
Abstract:
Methods, systems, and computer program products for black box techniques for detecting performance and availability issues in virtual machines exploiting hardware assisted virtualization are provided herein. A computer-implemented method includes capturing multiple hardware assisted virtualization exit calls generated in connection with a given virtual machine; calculating one or more virtual machine performance metrics attributed to the given virtual machine based on the multiple hardware assisted virtualization exit calls; determining one or more virtual machine performance issues and/or one or more virtual machine availability issues attributed to the given virtual machine based on the one or more calculated virtual machine performance metrics; and outputting an alert identifying the one or more determined virtual machine performance issues and/or the one or more virtual machine availability issues attributed to the given virtual machine.
Abstract:
An approach for regional firewall clustering for optimal state-sharing of different sites in a virtualized/networked (e.g., cloud) computing environment is provided. In a typical embodiment, each firewall in a given region is informed of its peer firewalls via a registration process with a centralized server. Each firewall opens up an Internet protocol (IP)-based communication channel to each of its peers in the region to share state table information. This allows for asymmetrical firewall flows through the network and allows routing protocols to ascertain the best path to a given destination without having to take firewall placement into consideration.
Abstract:
An approach for regional firewall clustering for optimal state-sharing of different sites in a virtualized/networked (e.g., cloud) computing environment is provided. In a typical embodiment, each firewall in a given region is informed of its peer firewalls via a registration process with a centralized server. Each firewall opens up an Internet protocol (IP)-based communication channel to each of its peers in the region to share state table information. This allows for asymmetrical firewall flows through the network and allows routing protocols to ascertain the best path to a given destination without having to take firewall placement into consideration.
Abstract:
A method and a system for monitoring power consumption are provided. The system comprises a breaker including a server for dynamically distributing network configuration parameters and an active RFID device, and further comprises a device including a client for dynamically distributing network configuration parameters and a passive RFID device, wherein the device is a switch or a receptacle. In the method and the system, the device is registered by the breaker by passing information of the passive RFID device to the active RFID device; the breaker and the devices are connected through Ethernet over a power line. The server is configured to provide a service to the client.
Abstract:
An approach for regional firewall clustering for optimal state-sharing of different sites in a virtualized/networked (e.g., cloud) computing environment is provided. In a typical embodiment, each firewall in a given region is informed of its peer firewalls via a registration process with a centralized server. Each firewall opens up an Internet protocol (IP)-based communication channel to each of its peers in the region to share state table information. This allows for asymmetrical firewall flows through the network and allows routing protocols to ascertain the best path to a given destination without having to take firewall placement into consideration.
Abstract:
A mechanism is provided for handling incidents occurring in a managed environment. An incident is detected in a resource in the managed environment. A set of incident handling actions are identified based on incident handling rules for an incident type of the incident. From the set of incident handling actions, one incident handling action is identified to be executed based on a set of impact indicators associated with the set of incident handling rules. The identified incident handling action is then executed to address the failure of the resource.
Abstract:
A method and associated systems of automatic notification of isolation of a first networked device. In response to detecting that it is not being properly managed by a network-management means, the first networked device creates a notification message that identifies the problem and requests proper network management. The device then transmits this message to any other device or networked node that it can communicate with, along with a request that recipients try to forward the message to the network-management means. If a device that receives the message is able to forward the message successfully, the network-management means takes appropriate steps to begin properly managing the first networked device.
Abstract:
An approach for regional firewall clustering for optimal state-sharing of different sites in a virtualized/networked (e.g., cloud) computing environment is provided. In a typical embodiment, each firewall in a given region is informed of its peer firewalls via a registration process with a centralized server. Each firewall opens up an Internet protocol (IP)-based communication channel to each of its peers in the region to share state table information. This allows for asymmetrical firewall flows through the network and allows routing protocols to ascertain the best path to a given destination without having to take firewall placement into consideration.