Abstract:
A device may be used to limit flexion of the spine without substantially limiting extension of the spine. Various accessories, instruments, and methods may be used to help deploy the flexion limiting device, manipulate, and adjust it.
Abstract:
A spinal implant for limiting flexion of the spine includes a tether structure for encircling adjacent spinal processes. Usually, a pair of compliance members will be provided as part of the tether structure for elastically limiting flexion while permitting an extension. A cross-member is provided between the compliance member or other portions of the tether structure to stabilize the tether structure and prevent misalignment after implantation.
Abstract:
An intelligent query system for processing voiced-based queries is disclosed, which uses a combination of both statistical and semantic based processing to identify the question posed by the user by understanding the meaning of the user's utterance. Based on identifying the meaning of the utterance, the system selects a single answer that best matches the user's query. The answer that is paired to this single question is then retrieved and presented to the user. The system, as implemented, accepts environmental variables selected by the user and is scalable to provide answers to a variety and quantity of user-initiated queries.
Abstract:
An overload detecting assembly comprises a first load bearing member (10) adapted to flex laterally in response to a load to be monitored, a second load bearing member (11) spaced from the first under normal load conditions and which is contacted and loaded by the first load bearing member (10) when it is loaded beyond a load limit. Preferably, the first load bearing member (10) has a yield point below the load limit and takes a permanent set once the yield point has been exceeded. A lateral probe (18) cooperates with the first load bearing member as it moves towards the second load bearing member and in turn deflects an indicator member (20) which takes a permanent set when a yield point is exceeded. Ready inspection of the indicator member then reveals whether or not it has been bent.
Abstract:
A semi-levered landing gear for an aircraft comprises a main shock absorber strut (1) connected to the airframe; a bogie beam (4) extending fore and aft of the airframe with forward and aft wheels (J, T) and a main pivot connection (5) to the strut (1) between the forward and aft wheels (7, T) and an auxiliary actuator (49) connected between the strut (1) and the front of the bogie beam (4) at an auxiliary pivot (14). The auxiliary actuator (49) comprises a two stage telescopic hydraulic unit comprising a first stage piston and cylinder actuator (59, 63) and a second stage piston and cylinder actuator (56, 50) operating coaxially within an outer casing (50). A respective piston rod (65, 60) each extends from each end of the casing (50) and is connected to a respective one of said (strut 1) and bogie beam (4). The first stage actuator (59, 63) is operable to an extended position, and the second stage actuator (56, 60) is operable between a retracted position (FIG. 11) and an extended position (FIG. 12) defined by respective end stops (75, 77) within the outer casing (50) and serves to control the tilt position of the bogie beam (4) relative to the strut (1). The second stage actuator (56, 60), when in the retracted position with the first stage actuator (59, 63) in the extended position, limits the length of the auxiliary actuator (9) between its connections (62, 67) to the strut (1) and bogie beam (4), so as to assume a predetermined intermediate length in which the bogie beam (4) is restrained to tilt about the auxiliary pivot (14) and thereby lengthens the landing gear during take-off. The second stage actuator (56, 60), when in the extended position with the first stage actuator (59, 63) in the extended position, allows the length of the auxiliary actuator (49) to assume a predetermined maximum length in which the bogie beam (4) is tilted about the main pivot (5) to a stowing position for stowing the landing gear in the aircraft.
Abstract:
An exemplary method for constraining spinous processes to elastically limit flexion of a spinal segment comprises piercing an interspinous ligament to form a first penetration above an upper side of an upper spinous process and advancing a first end of a first tether through the first penetration. The interspinous ligament is pierced again to form a second penetration below a lower side of a lower spinous process and a second end of a second tether is advanced through the second penetration. Joining the first and second tethers together forms an extensible tether structure coupling the upper and lower spinous processes together while permitting extension therebetween. Adjusting the tether structure sets relative distance or angle between the upper and lower spinous processes to a target value.
Abstract:
A motor vehicle key for locking or unlocking a door of a motor vehicle or for operating the motor vehicle includes a display configuration for displaying information which relates to the motor vehicle or for displaying the function of an operator control element of the motor vehicle key. The display configuration includes at least a MEMS display, a cholesteric display and/or an electrophoretic display.
Abstract:
A speech-enabled WWW based computing system allows a user to interact with content associated with a web page and select items of interest using speech as a mode of input. Dynamic grammars can assist in the recognition operations to improve speed and comprehension.
Abstract:
A real-time speech recognition system includes distributed processing across a client and server for recognizing a spoken query by a user. Both the client and server can dedicate a variable number of processing resources for performing speech recognition functions. The partitioning of responsibility for speech recognition operations can be done on a client by client or connection by connection basis.
Abstract:
A spinal implant system for restricting flexion of a spine includes an elongate band proportioned to engage at least two spinous processes. During use, the band is positioned engaging the spinous processes at a spinal segment of interest, where it restricts flexion at the segment. The length and tension of the band may be adjustable following to implantation using percutaneous or transcutaneous means.