摘要:
Programmable illuminators in exposure tools are employed to increase the degree of freedom in tool matching. A tool matching methodology is provided that utilizes the fine adjustment of the individual source pixel intensity based on a linear programming (LP) problem subjected to user-specific constraints to minimize the difference of the lithographic wafer data between two tools. The lithographic data can be critical dimension differences from multiple targets and multiple process conditions. This LP problem can be modified to include a binary variable for matching sources using multi-scan exposure. The method can be applied to scenarios that the reference tool is a physical tool or a virtual ideal tool. In addition, this method can match different lithography systems, each including a tool and a mask.
摘要:
A system for exposing a resist layer to an image that includes a layer reflective to imaging tool radiation and a resist layer having a region of photosensitivity over the reflective layer. An imaging tool projects radiation containing an aerial image onto the resist layer, with a portion of the radiation containing the aerial image passing through the resist and reflecting back to the resist to form an interference pattern of the projected aerial image through the resist layer thickness. The thickness and location of the resist layer region of photosensitivity are selected to include from within the interference pattern higher contrast portions of the interference pattern in the direction of the resist thickness, and to exclude lower contrast portions of the interference pattern in the resist thickness direction from said resist layer region of photosensitivity, to improve contrast of the aerial image in said resist layer region of photosensitivity.
摘要:
A method and system for exposing a resist layer with regions of photosensitivity to an image in a lithographic process using a high numerical aperture imaging tool. There is employed a substrate having thereover a layer reflective to the imaging tool radiation and a resist layer having a region of photosensitivity over the reflective layer, with the resist layer having a thickness. The imaging tool is adapted to project radiation containing an aerial image onto the resist layer, with a portion of the radiation containing the aerial image passing through the resist layer and reflecting back to the resist layer. The reflected radiation forms an interference pattern in the resist layer of the projected aerial image through the resist layer thickness. The thickness and location of the resist layer region of photosensitivity with respect to the reflective layer are selected to include from within the interference pattern higher contrast portions of the interference pattern in the direction of the resist thickness, and to exclude lower contrast portions of the interference pattern in the resist thickness direction from said resist layer region of photosensitivity, to improve contrast of the aerial image in said resist layer region of photosensitivity.
摘要:
Disclosed are embodiments of a voltage controlled oscillator (VCO) capable of non-volatile self-correction to compensate for process variations and to ensure that the center frequency of the oscillator is maintained within a predetermined frequency range. This VCO incorporates a pair of varactors connected in parallel to an inductor-capacitor (LC) tank circuit for outputting a periodic signal having a frequency that is proportional to an input voltage. A control loop uses a programmable variable resistance e-fuse to set a compensation voltage to be applied to the pair of varactors. By adjusting the compensation voltage, the capacitance of the pair of varactors can be adjusted in order to selectively increase or decrease the frequency of the periodic signal in response to a set input voltage and, thereby to bring the frequency of that periodic signal into the predetermined frequency range. Also disclosed are embodiments of an associated design structure for such a VCO and an associated method for operating such a VCO.
摘要:
Disclosed are embodiments of a voltage controlled oscillator (VCO) capable of non-volatile self-correction to compensate for process variations and to ensure that the center frequency of the oscillator is maintained within a predetermined frequency range. This VCO incorporates a pair of varactors connected in parallel to an inductor-capacitor (LC) tank circuit for outputting a periodic signal having a frequency that is proportional to an input voltage. A control loop uses a programmable variable resistance e-fuse to set a compensation voltage to be applied to the pair of varactors. By adjusting the compensation voltage, the capacitance of the pair of varactors can be adjusted in order to selectively increase or decrease the frequency of the periodic signal in response to a set input voltage and, thereby to bring the frequency of that periodic signal into the predetermined frequency range. Also disclosed are embodiments of an associated design structure for such a VCO and an associated method for operating such a VCO.
摘要:
Disclosed are embodiments of a voltage controlled oscillator (VCO) capable of non-volatile self-correction to compensate for process variations and to ensure that the center frequency of the oscillator is maintained within a predetermined frequency range. This VCO incorporates a pair of varactors connected in parallel to an inductor-capacitor (LC) tank circuit for outputting a periodic signal having a frequency that is proportional to an input voltage. A control loop uses a programmable variable resistance e-fuse to set a compensation voltage to be applied to the pair of varactors. By adjusting the compensation voltage, the capacitance of the pair of varactors can be adjusted in order to selectively increase or decrease the frequency of the periodic signal in response to a set input voltage and, thereby to bring the frequency of that periodic signal into the predetermined frequency range. Also disclosed are embodiments of an associated design structure for such a VCO and an associated method for operating such a VCO.
摘要:
Disclosed are embodiments of a voltage controlled oscillator (VCO) capable of non-volatile self-correction to compensate for process variations and to ensure that the center frequency of the oscillator is maintained within a predetermined frequency range. This VCO incorporates a pair of varactors connected in parallel to an inductor-capacitor (LC) tank circuit for outputting a periodic signal having a frequency that is proportional to an input voltage. A control loop uses a programmable variable resistance e-fuse to set a compensation voltage to be applied to the pair of varactors. By adjusting the compensation voltage, the capacitance of the pair of varactors can be adjusted in order to selectively increase or decrease the frequency of the periodic signal in response to a set input voltage and, thereby to bring the frequency of that periodic signal into the predetermined frequency range. Also disclosed are embodiments of an associated design structure for such a VCO and an associated method for operating such a VCO.
摘要:
A method for exposing a resist layer with regions of photosensitivity to an image in a lithographic process using a high numerical aperture imaging tool. There is employed a substrate having thereover a layer reflective to the imaging tool radiation and a resist layer having a region of photosensitivity over the reflective layer, with the resist layer having a thickness. The imaging tool is adapted to project radiation containing an aerial image onto the resist layer, with a portion of the radiation containing the aerial image passing through the resist layer and reflecting back to the resist layer. The reflected radiation forms an interference pattern in the resist layer of the projected aerial image through the resist layer thickness. The thickness and location of the resist layer region of photosensitivity with respect to the reflective layer are selected to include from within the interference pattern higher contrast portions of the interference pattern in the direction of the resist thickness, and to exclude lower contrast portions of the interference pattern in the resist thickness direction from said resist layer region of photosensitivity, to improve contrast of the aerial image in said resist layer region of photosensitivity.
摘要:
Methods, and program storage devices, for performing model-based optical lithography corrections by partitioning a cell array layout, having a plurality of polygons thereon, into a plurality of cells covering the layout. This layout is representative of a desired design data hierarchy. A density map is then generated corresponding to interactions between the polygons and plurality of cells, and then the densities within each cell are convolved. An interaction map is formed using the convolved densities, followed by truncating the interaction map to form a map of truncated cells. Substantially identical groupings of the truncated cells are then segregated respectively into differing ones of a plurality of buckets, whereby each of these buckets comprise a single set of identical groupings of truncated cells. A hierarchical arrangement is generated using these buckets, and the desired design data hierarchy enforced using the hierarchical arrangement to ultimately correct for optical lithography.
摘要:
A fast method of verifying a lithographic mask design is provided wherein catastrophic errors are identified by iteratively simulating and verifying images for the mask layout using progressively more accurate image models, including optical and resist models. Progressively accurate optical models include SOCS kernels that provide successively less influence. Corresponding resist models are constructed that may include only SOCS kernel terms corresponding to the optical model, or may include image trait terms of varying influence ranges. Errors associated with excessive light, such as bridging, side-lobe or SRAF printing errors, are preferably identified with bright field simulations, while errors associated with insufficient light, such as necking or line-end shortening overlay errors, are preferably identified with dark field simulations.