摘要:
In some embodiments, a paddle lead is implanted within a patient such that the electrodes are positioned within the cervical or thoracic spinal levels. An electrode combination on a first row of electrodes can be determined that is effective for a first pain location with minimal effects on other regions of the body. The first pain location can be addressed by stimulating a first dorsal column fiber due to the relatively fine electrical field resolution achievable by the multiple columns. Then, another electrode combination on a second row of electrodes can be determined for a second pain location with minimal effects on other regions. The second pain location could be addressed by stimulating a second dorsal column fiber. After the determination of the appropriate electrodes for stimulation, the patient's IPG can be programmed to deliver pulses using the first and second rows according to the determined electrode combinations.
摘要:
In one embodiment, a method of operating an implantable pulse generator comprises: providing power to a voltage converter at a first voltage level; outputting a second voltage level by the voltage converter, the second voltage level being a variable voltage level that is controlled by a control signal provided to the voltage converter, the second voltage level being provided to pulse generating circuitry of the implantable pulse generator, the second voltage level being selectable from a plurality of voltages including non-integer multiples of the first voltage level; generating pulses by the pulse generating circuitry, the pulse generating circuitry including current control circuitry for controlling the pulses to cause the pulses to provide substantially constant current to tissue of the patient; and applying at least two different control signals to the voltage converter during individual pulses to provide successively increasing voltages to the pulse generating circuitry during a respective pulse.
摘要:
Techniques are disclosed which provide a substantially constant battery reserve capacity with respect to therapeutic medical devices. Accordingly, a battery control system may be operable to maintain a substantially constant reserve capacity throughout the life of the battery. The battery reserve capacity activation threshold may be set and continuously or periodically updated so that a battery's remaining capacity equals the predetermined reserve capacity when the measured parameter reaches the activation threshold, thereby allowing a maximum amount of a battery's total capacity to be employed for therapeutic use and reserve only that portion of that capacity determined to provide for a desired level and/or period of device function after reaching the reserve threshold.
摘要:
The present invention relates to an implantable infusion pump having a refillable infusate reservoir in fluid communication with a delivery site via a flow path. This flow path includes a flow resistance. The infusion pump includes a sensing device(s), positioned relative to the flow path, to provide data regarding a flow rate along the flow path. The infusion pump effects a division of a total flow period into at least a plurality of unit dose periods, each unit dose period effecting delivery of a unit dose of infusate. The cumulative effect of delivering the total number of unit dose periods is the delivery of a desired dose over the total flow period. The present invention permits a reservoir pressure to vary over any portion of total flow period but effects a constant-pressure state over each unit dose cycle.
摘要:
A system, method, and computer program product for interactively defining and calibrating a treatment protocol program for a stimulation device such as an implantable pulse generator (IPG). An IPG, whether it is a self-contained implantable pulse generator (SCIPG) or externally-powered implantable pulse generator (EPIPG), communicates with an external patient programmer (EPP) to receive treatment protocol programs. Using the EPP, treatment protocol programs are developed, executed, and tested while the patient provides real-time feedback, providing efficient and effective programming.
摘要:
The invention is directed to a dose control apparatus. The apparatus has two armatures pressed against a valve seat by at least one spring. A coil induces a magnetic field that motivates the armatures against the force of the spring, thereby opening the valve. The armatures may move along a common axis in opposite directions. The apparatus may also include a core located between the armatures and a casing about the coil. The core and casing act to guide the magnetic field, reducing the power requirements for creating the field. Current may be periodically reversed in the coil to provide a degaussing field. In addition, a signal may be produced by the coil in the presence an externally applied magnetic field such as an MRI. An opposing magnetic field may be produced by the coil or the current provided to the coil may be adjusted.
摘要:
In one embodiment, a method of programming an IPG comprises providing one or several GUI screens on the programmer device, the GUI screens comprising a master amplitude GUI control for controlling amplitudes for stimsets of a stimulation program and one or several balancing GUI controls for controlling amplitudes of each stimset of the stimulation program; communicating one or several commands from the programmer device to the IPG to change the amplitude of all stimsets of the stimulation program in response to manipulation of the master amplitude GUI control, wherein the amplitude of each stimulation set is automatically calculated by a level selected through the master amplitude GUI control and one or several calibration parameters for the respective stimulation set; and automatically recalculating the one or several calibration parameters for a respective stimulation set in response to manipulation of one of the balancing GUI controls and storing the recalculated calibration parameters.
摘要:
In one embodiment, a method of programming an IPG comprises providing one or several GUI screens on the programmer device, the GUI screens comprising a master amplitude GUI control for controlling amplitudes for stimsets of a stimulation program and one or several balancing GUI controls for controlling amplitudes of each stimset of the stimulation program; communicating one or several commands from the programmer device to the IPG to change the amplitude of all stimsets of the stimulation program in response to manipulation of the master amplitude GUI control, wherein the amplitude of each stimulation set is automatically calculated by a level selected through the master amplitude GUI control and one or several calibration parameters for the respective stimulation set; and automatically recalculating the one or several calibration parameters for a respective stimulation set in response to manipulation of one of the balancing GUI controls and storing the recalculated calibration parameters.
摘要:
Disclosed are systems and methods which provide trial stimulators suited for use interoperatively and during patient trial. Trial stimulator embodiments provide a patient interface and/or clinician interface which appears and functions substantially the same as an interface of a pulse generator controller which will be used after a trial period. A compliance monitor feature may be provided to facilitate verifying the proper use of the trial stimulator during a trial period. A diagnostic feature may be provided to facilitate verifying proper operation of various aspects of a trial stimulator, such as electrode impedance analysis. Trial stimulators of embodiments provide stimulation to a plurality of tissues and/or areas of the body, such as spinal cord stimulation, deep brain stimulation, etcetera. Embodiments provide for multi-electrode stimulation and multi-stimulation programs. Embodiments are configured to provide active discharge of stimulation pulses as well as to utilize constant current sources in providing the stimulation pulses.