摘要:
A robot apparatus includes face includes a face tracking module (M2) for tracking a face in an image photographed by a CCD camera, a face detecting module (M1) for detecting face data of the face in the image photographed by the image pickup device, based on the face tracking information by the face tracking module (M2) and a face identification module (M3) for identifying a specified face based on the face data as detected by the face data detecting module (M1).
摘要:
A learning apparatus includes a storage unit configured to store a network formed by a plurality of nodes each holding dynamics; a learning unit configured to learn the dynamics of the network in a self-organizing manner on the basis of observed time-series data; a winner-node determiner configured to determine a winner node, the winner node being a node having dynamics that best match the time-series data; and a weight determiner configured to determine learning weights for the dynamics held by the individual nodes according to distances of the individual nodes from the winner node. The learning unit is configured to learn the dynamics of the network in a self-organizing manner by degrees corresponding to the learning weights.
摘要:
A robot apparatus includes face includes a face tracking module (M2) for tracking a face in an image photographed by a CCD camera, a face detecting module (M1) for detecting face data of the face in the image photographed by the image pickup device, based on the face tracking information by the face tracking module (M2) and a face identification module (M3) for identifying a specified face based on the face data as detected by the face data detecting module (M1).
摘要:
A robot includes a face extracting section for extracting features of a face included in an image captured by a CCD camera, and a face recognition section for recognizing the face based on a result of face extraction by the face extracting section. The face extracting section is implemented by Gabor filters that filter images using a plurality of filters that have orientation selectivity and that are associated with different frequency components. The face recognition section is implemented by a support vector machine that maps the result of face recognition to a non-linear space and that obtains a hyperplane that separates in that space to discriminate a face from a non-face. The robot is allowed to recognize a face of a user within a predetermined time under a dynamically changing environment.
摘要:
A robot apparatus integrates individual recognition results received asynchronously and then passes the integrated information to a behavior module. Thus, handling of information in the behavior module is facilitated. Since information regarding recognized observation results is held as a memory, even if observation results are temporarily missing, it appears to an upper module that items are constantly there in perception. Accordingly, insusceptibility against recognizer errors and sensor noise is improved, so that a stable system that is not dependent on timing of notifications by recognizers is implemented. Thus, the robot apparatus integrates a plurality of recognition results from external environment and handles the integrated information as meaningful symbol information, allowing sophisticated behavior control.
摘要:
There is provided a robot device including an irradiation unit that irradiates pattern light to an external environment, an imaging unit that acquires an image by imaging the external environment, an external environment recognition unit that recognizes the external environment, an irradiation determining unit that controls the irradiation unit to be turned on when it is determined that irradiation of the pattern light is necessary based on an acquisition status of the image, and a light-off determining unit that controls the irradiation unit to be turned off when it is determined that irradiation of the pattern light is unnecessary or that irradiation of the pattern light is necessary to be forcibly stopped, based on the external environment.
摘要:
A data processing device includes a state value calculation unit which calculates a state value of which the value increases as much as a state with a high transition probability for each state of the state transition model, an action value calculation unit which calculates an action value, of which the value increases as a transition probability increases for each state of the state transition model and each action that the agent can perform, a target state setting unit which sets a state with great unevenness in the action value among states of the state transition model to a target state that is the target to reach by action performed by the agent, and an action selection unit which selects an action of the agent so as to move toward the target state.
摘要:
In a plane detection apparatus, a plane detection unit (3) includes a line fitting block (4) to select a group of distance data points being in one plane from distance data forming an image and extract lines from the distance data point group, and a region growing block (5) to detect one or more planar regions existing in the image from a group of all lines included in the image and extracted by the line fitting block (4). The line fitting block (4) first draws a line D1 connecting end points of the distance data point group, searches a point of interest brk whose distance to the line L1 is largest, segments the data point group by the point of interest brk when the distance is larger than a predetermined threshold, and determines a line L2 by the least-squares method when the distance is smaller than the predetermined threshold. In case there exists a larger number of data points than a predetermine number on one side of the line L2, the data point group is determined to be in a zig-zag shape, the data point group is segmented by the point of interest brk. These operations are done repeatedly. Thus, a plurality of planes robust against noises is detected simultaneously and accurately from distance data including measurement noises.
摘要:
A legged mobile robot can calculate the movement amount between a portion of the robot apparatus that had been in contact with a floor up to now and a next portion of the robot apparatus in contact with the floor using kinematics and to switch transformation to a coordinate system serving as an observation reference as a result of the switching between the floor contact portions.
摘要:
An obstacle recognition apparatus is provided which can recognize an obstacle by accurately extracting a floor surface. It includes a distance image generator (222) to produce a distance image using a disparity image and homogeneous transform matrix, a plane detector (223) to detect plane parameters on the basis of the distance image from the distance image generator (222), a coordinate transformer (224) to transform the homogeneous transform matrix into a coordinate of a ground-contact plane of a robot apparatus (1), and a floor surface detector (225) to detect a floor surface using the plane parameters from the plane detector (223) and result of coordinate transformation from the coordinate transformer (224) and supply the plane parameters to an obstacle recognition block (226). The obstacle recognition block (226) selects one of points on the floor surface using the plane parameters of the floor surface detected by the floor surface detector (225) and recognizes an obstacle on the basis of the selected point.