摘要:
A super-resolution medium (1) has a medium identification information for specifying a type of medium recorded in a medium information area (3) by use of pre-pits having a length not shorter than a length of a resolution limit of an optical system in a reproducing device (10).
摘要:
A super-resolution medium (1) has a medium identification information for specifying a type of medium recorded in a medium information area (3) by use of pre-pits having a length not shorter than a length of a resolution limit of an optical system in a reproducing device (10).
摘要:
An optical data recording medium, in which irradiation of a light beam is used for recording and/or reproducing data includes (i) a substrate having an a rise and/or a recess which are a light-incident surface, (ii) a reflective layer, provided on the light-incident surface of the substrate, for reflecting the light beam, (iii) a light absorption layer for converting, to heat, a light of the light beam to heat on the surface of the reflective layer, (iv) a reproducing layer, provided on the surface of the heat-light converting layer, having a transmittance that changes in accordance with a light intensity distribution of the light beam. The optical data recording medium is excellent in super-resolution property, and enables reproduction of a shorter mark length.
摘要:
An optical information recording medium of the present invention includes a thin film section made up of one or more thin film, the thin film section being provided on a substrate. Thin films of the thin film section include a single optical multiple interference film which incites optical multiple interference in a thin film section, the optical multiple interference being incited by the change of complex refractive index in accordance with the intensity of incident light. Also, the composition and thickness of the optical multiple interference film are arranged in such a manner as to cause the wavelength distribution of the reflectance of the thin film section at room temperatures to have a minimum value within wavelengths of ±80 nm of the incident light for reproduction. With this, the design freedom of the optical multiple interference film which realizes super-resolution reproduction with a reduced effective reproduction spot is significantly increased.
摘要:
A super-resolution medium (1) has a medium identification information for specifying a type of medium recorded in a medium information area (3) by use of pre-pits having a length not shorter than a length of a resolution limit of an optical system in a reproducing device (10).
摘要:
An optical data recording medium, in which irradiation of a light beam is used for recording and/or reproducing data includes (i) a substrate having an a rise and/or a recess which are a light-incident surface, (ii) a reflective layer, provided on the light-incident surface of the substrate, for reflecting the light beam, (iii) a light absorption layer for converting, to heat, a light of the light beam to heat on the surface of the reflective layer, (iv) a reproducing layer, provided on the surface of the heat-light converting layer, having a transmittance that changes in accordance with a light intensity distribution of the light beam. The optical data recording medium is excellent in super-resolution property, and enables reproduction of a shorter mark length.
摘要:
An optical data recording medium, in which irradiation of a light beam is used for recording and/or reproducing data includes (i) a substrate having an a rise and/or a recess which are a light-incident surface, (ii) a reflective layer, provided on the light-incident surface of the substrate, for reflecting the light beam, (iii) a light absorption layer for converting, to heat, a light of the light beam to heat on the surface of the reflective layer, (iv) a reproducing layer, provided on the surface of the heat-light converting layer, having a transmittance that changes in accordance with a light intensity distribution of the light beam. The optical data recording medium is excellent in super-resolution property, and enables reproduction of a shorter mark length.
摘要:
An optical information recording medium includes a substrate formed in a concave-convex state by providing pits or grooves corresponding to recorded information, used for optically reproducing the information by irradiation of a light beam, and may also include a recording layer. The optical information recording medium includes a temperature responsive layer 21 whose reflectance and/or transmittance for the light beam changes with an increase in temperature caused by the irradiation of a light beam and a light absorption layer 22. With such an arrangement, the present invention provides an optical information recording medium enabling secure and highly accurate readout of information recorded with high density, a recording method and a readout method using the same, a readout device, and a recording device.
摘要:
By using an existing, relatively inexpensive manufacturing device, micropatterns (e.g. guiding grooves, prepits) having such track pitch and pit pitch that are smaller than the diameter of a light spot are formed more finely. There are provided at least two layers, i.e. (i) a resin substrate and (ii) a depressed part inducing layer made of dielectric material or metal oxide. A light beam is radiated and focused onto the depressed part inducing layer so as to form pit parts and/or guiding grooves on irradiated parts of the resin substrate. The depressed part inducing layer is then removed, so as to expose the pit parts and/or guiding grooves.
摘要:
An optical information storage medium includes a light transmitting layer, a first information storage layer, an intermediate layer mainly made of resin, a second information storage layer, and a substrate. The light transmitting layer, the first information storage layer, the intermediate layer, the second information storage layer, and the substrate are layered in this order from a reproduction light incident side. Each of the first information storage layer and the second information storage layer includes: a light absorbing film that absorbs reproduction light to generate heat; and a reproduction film that is heated by the heat generated by the light absorbing film so as to reproduce a signal shorter in mark length than a resolution limit of an optical system of a reproducing apparatus.