Abstract:
An implantable medical therapy delivery device includes a non-conductive filament extending along a length of an outer surface of an insulative body of the device, wherein the filament includes a plurality of fixation projections and is secured to the outer surface of the insulative body such that the projections protrude outward from the outer surface and are spaced apart from one another along the length of the outer surface. The filament may be wound about the length with an open pitch. In some cases, the insulative body includes an open-work member forming at least a portion of the outer surface thereof, and the filament may be interlaced with the open-work member. In these cases, the filament may be bioabsorbable, for example, to provide only acute fixation via the projections thereof, while the open-work member provides a structure for tissue ingrowth and, thus, more permanent or chronic fixation.
Abstract:
Implant tools and techniques for implantation of a medical lead, catheter or other implantable component are provided. The implant tools and techniques are particularly useful in implanting medical electrical leads in extravascular locations, including subcutaneous locations. An example implant tool for implanting a medical lead includes a rod and a sheath configured to be placed on the rod. The rod includes a handle, a shaft having a proximal end adjacent to the handle and a distal end, and an attachment feature toward the distal end of the shaft, the attachment feature configured to couple to the medical lead. The sheath is configured to be placed in multiple positions along the rod including a first position in which the sheath does not interact with the attachment feature and second position in which the sheath does interact with the attachment feature.
Abstract:
A medical electrical lead may include a conductive electrode shaft located near the distal end within the lead body, a coiled conductor extending within the lead body from the proximal end and coupled to a first end of the conductive electrode shaft, and an electrode located near the distal end of the lead body and coupled to an opposite end of the conductive electrode shaft as the coiled conductor. The lead may also include an energy dissipating structure located near the distal end of the lead body and defining a lumen through which a portion of the coiled conductor extends. The energy dissipating structure may include a region having one or more protrusions extending toward a central axis of the lumen to push the coiled conductor off center relative to the central axis of the lumen.
Abstract:
Implant tools and techniques for implantation of a medical lead, catheter or other implantable component are provided. The implant tools and techniques are particularly useful in implanting medical electrical leads in extravascular locations, including subcutaneous locations. An example implant tool for implanting a medical lead includes a rod having a handle and a shaft, and a sheath configured to be placed on the shaft of the rod. The sheath includes a body having proximal end and a distal, a channel formed by the body, the channel extending from the proximal end to the distal end of the body, and an opening that extends along the body of the sheath from the proximal end to the distal end, wherein the channel is accessible via the opening.
Abstract:
Implant tools and techniques for implantation of a medical lead, catheter or other component are provided. The implant tools and techniques are particularly useful in implanting medical electrical leads in extravascular locations, including subcutaneous locations. An implant tool for implanting a medical lead may include a shaft having a proximal end, a distal end, an open channel that extends from near the proximal end to the distal end, and an attachment feature configured to couple to the medical lead. Such an implant tool provides a user with the versatility to use the same implant tool to either pull the lead through a tunnel formed via the implant tool or push the lead through the tunnel via the open channel in the implant tool.
Abstract:
A coiled continuous conductor wire of an implantable medical electrical lead includes a first, electrode length and a second, insulated length, wherein the insulated length of the wire has a radial cross-section defined by a round profile, while the electrode length of the wire has a radial cross-section defined by a flattened profile, a long axis edge of which defines an outer diameter surface of the electrode length. The radial cross-section profile, along the electrode length of wire, is preferably flattened after an entire length of the wire has been coiled.
Abstract:
A medical electrical lead may include a lead body formed to define a first lumen extending from the proximal end to a location near the distal end and having a first central axis. The lead includes an electrode located near the distal end of the lead body and an energy dissipating structure located near the distal end of the lead body, the energy dissipating structure including a conductive main portion that defines a second lumen having a second central axis that is offset relative to the first central axis of the first lumen defined by the lead body and a conductive transition portion that extends towards the first lumen defined by the lead body. A conductor contacts the energy dissipating structure within the transition portion of the energy dissipating structure to provide a substantially continuous interference contact with the energy dissipating structure.
Abstract:
Methods and systems for positioning a leadless pacing device (LPD) in cardiac tissue are disclosed. A delivery device is employed that comprises a proximal end, a distal end and a lumen therebetween sized to receive the LPD. The LPD has a leadlet extending therefrom that includes a means to fixate the leadlet to tissue. The delivery device comprises an introducer to introduce the LPD into the lumen of the delivery device. The LPD is loaded in the distal end of the lumen of the delivery device. The leadlet extends proximally from the LPD while the fixation means extends distally toward the LPD. A LPD mover is configured to advance the LPD out of the delivery device. A leadlet mover is configured to advance the leadlet out of the lumen delivery device and cause the leadlet to engage with cardiac tissue.
Abstract:
An example implantable medical lead includes a first defibrillation electrode and a second, defibrillation electrode, the first and second, defibrillation electrodes configured to deliver first electrical therapy. Tire implantable medical lead also includes a. pace electrode disposed longitudinally between the first defibrillation electrode and die second defibrillation electrode, the pace electrode configured to deliver second electrical therapy comprising pacing pulses. The implantable medical lead further includes a shield disposed over a portion of an outer surface of the pace electrode and extending laterally away from the pace electrode, wherein the shield comprises an asymmetric shape about a longitudinal axis of the shield, wherein die shield is configured to impede an electric field of at least one of the first and second electrical therapies in a direction away from a. heart of the patient.
Abstract:
Devices, systems, and methods for treating vessel openings are disclosed herein. According to some embodiments, a device for treating a vessel opening comprises a housing configured to be positioned within an opening in subcutaneous tissue proximate the vessel opening. The housing can comprise an inner wall and an outer wall. The inner wall can define a first lumen configured to receive an elongate member therein and the inner and outer walls can define a second lumen configured to receive an adhesive. The outer wall of the housing can define one or more apertures extending radially from the second lumen to an environment external of the housing. The device can comprise an actuator configured to be received within the second lumen. Movement of the actuator can force the adhesive to move through the aperture to the external environment and into an extravascular space within the subcutaneous tissue proximate the vessel opening.