摘要:
A read channel component of a magnetic recording system employs equalization of a signal received from the magnetic recording channel, the equalization being modified depending upon the presence or absence of DC shifts in the signal. Equalization corrects for DC shifts, if present, prior to detection and decoding of servo data, such as servo address mark (SAM) and Gray code data. In a first implementation, a DC shift detector detects the presence or absence of DC shifts and modifies equalization in a predetermined manner. In a second implementation, filtering is applied to the signal to enhance equalization in the presence of DC shift, and both filtered and unfiltered signals employed for detection of the servo data.
摘要:
A repeatable run-out (RRO) detector employs one or more digital interpolators to interpolate asynchronous sample values representing an RRO address mark (AM) and RRO data, and an asynchronous maximum-likelihood (AML) detector to detect the RRO AM. The AML detector selects one of either the asynchronous or interpolated sample sequences that are closest in distance to the ideal RRO AM sample sequence. In addition, a gain value is generated for each of the asynchronous and interpolated sample sequences. Once the RRO AM is detected, the AML detector provides a RRO AM found signal. Gain estimate values for either the selected asynchronous or selected interpolated sample sequences corresponding to the RRO AM found signal are averaged over a predefined number of detection events to generate a best gain error metric (BGEM). The BGEM is employed to adjust the gain of the asynchronous sample sequence.
摘要:
A system for block encoding and block decoding of servo data with a rate (M/N) code, where M is an integer greater than l and N is an integer that is greater than M. Two codes are described for the encoding and decoding processes: a rate (2/6) code and a rate (2/8) code. In general, block encoding and block decoding maps between M servo data bits and N coded symbol bits. Such block encoding with a rate (M/N) code may be employed in a magnetic recording system for encoding servo data that is written to a servo data sector on a magnetic recording medium. Encoded servo data is read from the magnetic medium and block decoded. A forced maximum-likelihood, partial-response (PRML) detector is used to detect the N coded symbol bits from channel samples read from the magnetic medium. Block encoding provides greater coding gain for a detector when the characteristics of the block code are used to improve performance of the PRML detector that is used to detect the N coded symbol bits. Such PRML detector may employ a Viterbi algorithm (VA). State transition decisions over a block of N channel samples, or N clock cycles, form a path through a trellis of the VA, and the characteristics of the block code are used to force decisions for state transitions in the trellis. The PRML detector may force a decision for each state transition based on a priori knowledge of the known valid transitions defined by the rate (M/N) code symbol bits.
摘要:
A system and method employing a rate 24/25 (0,9) code constructed in accordance with a data byte interleaved with a rate 16/17 (0,5) codeword formed from two data bytes limits the number of consecutive zeros seen by a channel to nine. The 16/17 (0,5) codeword is formed from the two data bytes in accordance with a set of pivot bits and a set of corrections for predefined code violations. The additional data byte is interleaved into the 16/17 (0,5) codeword by splitting the byte into a pair of portions and inserting the portions into the 16/17 (0,5) codeword at locations adjacent to predefined ones of the pivot bits. The rate 24/25 (0,9) code is suitable for magnetic or similar recording media and may be employed in partial response maximum likelihood read channels. A feature of the constructed code is a high transition density which allows for more frequent timing and gain control updates, which results in lower required channel input signal to noise ratio for a given channel performance.