Abstract:
A method, apparatus, and computer-readable medium for transmitting coded messages to a receiving device including constructing a data vector including a plurality of data bits, transforming the data vector into a u-domain vector, applying a mask to the u-domain vector, encoding the masked u-domain vector with polar encoding to generate a transmission vector, and transmitting, to the receiving device, the transmission vector.
Abstract:
Certain aspects of the present disclosure provide techniques for reducing overhead for channel state information (CSI). Certain aspects provide a method for wireless communication. The method generally includes receiving a channel state information reference signal (CSI-RS), determining one or more feedback components associated with a CSI feedback type based on the CSI-RS, identifying that a payload of the one or more feedback components is to be compressed, compressing the payload, and reporting the compressed payload.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, an encoding device may determine a least reliable subset of information bits included in a set of information bits that includes a predefined active set of information bits to be encoded; may determine a codeword bit to be added to a codeword based at least in part on the least reliable subset of information bits, wherein adding the codeword bit to the codeword improves reliability of the least reliable subset of information bits; may add the codeword bit to the codeword; and may transmit the codeword. Numerous other aspects are provided.
Abstract:
Certain aspects of the present disclosure generally relate to methods and apparatus for generating and encoding bits of CSI report. In some cases, a UE may determine a payload size for channel state information (CSI) reporting based, at least in part, on a supported rank, calculate a packet length for the CSI reporting based on the determined payload size, and encode the CSI for a selected CSI resource index (CRI), based on the payload size and the calculated packet length, to generate a coded packet.
Abstract:
Enhanced hybrid channel state information (CSI) reference signal (CSI-RS) for full dimension multiple input, multiple output (FD-MIMO) is discussed in which a base station configures a first CSI-RS resource for non-precoded CSI-RS and a second CSI-RS resource for beamformed CSI-RS. The first and second CSI-RS resources are associated with the same CSI process in a hybrid CSI-RS operation. The UE provides a first CSI report including a first rank and precoding matrix indicator (PMI) based on measurement of the non-precoded CSI-RS. The base station may use this first CSI process. CSI report for the beamforming of the beamformed CSI-RS. The UE further provides a second CSI report including a second rank, second PMI, and CQI based on measurement of the beamformed CSI-RS. Additional aspects may provide for a base station to aggregate multiple two-port CSI-RS resource configurations into a single multiport CSI-RS resource configuration that may be dynamically shared between different UEs.
Abstract:
An apparatus and method for communication including determining an assignment for one of a plurality of symbol durations in a format combination; determining if at least one bit from one or more first upper channels is available if the assignment is associated with the one or more first upper channels and occupying the one of the plurality of symbol durations with the at least one bit, or if unavailable, occupying the one of the plurality of symbol durations with at least one bit from one or more second upper channels or another first upper channel, wherein the first upper channels and the second upper channels are different; and disabling transmission of format information; or including enabling a BTFD hypothesis testing mode; receiving one or more symbol durations on a physical channel; and attempting to decode the received symbol duration with a first hypothesis that a DCCH channel is not transmitted.
Abstract:
Aspects of the present disclosure relate to wireless communication. In some aspects, a user equipment may determine at least one of: a first number of coefficients to be included in a first set of coefficients in a transfer domain that characterize compressed channel state information (CSI) for a first layer, or a first quantization scheme to be used to interpret the first set of coefficients. The UE may determine at least one of: a second number of coefficients to be included in a second set of coefficients in the transfer domain that characterize the compressed CSI for a second layer, or a second quantization scheme to be used to interpret the second set of coefficients. The UE may transmit a report that identifies the first set of coefficients and the second set of coefficients based at least in part on the determination(s). Other aspects are provided.
Abstract:
A method of wireless communication performed by a user equipment (UE), the method including: receiving an indication of uplink (UL) precoding information, wherein the UL precoding information includes a set of frequency domain (FD) bases and coefficients applied to one or more antenna ports; determining a size of the FD bases based at least in part on an item selected from a list consisting of: a dedicated indication, a frequency resource allocation of an UL channel, and an UL bandwidth part (BWP); receiving a grant of a physical uplink shared channel (PUSCH), wherein a frequency resource allocation of the PUSCH includes a plurality of FD units; and determining precoding matrices for the plurality of FD units based at least in part on entries of the set of FD bases, wherein the entries correspond to positions of the FD bases in a range of a frequency resource.
Abstract:
Certain aspects of the present disclosure provide a technique for parallel distribution matching (DM) encoding. A user equipment (UE) implements the technique to perform a first round of parallel DM encoding using k information bits as input by: 1) segmenting the k information bits into N blocks of information bits, and 2) encoding the N blocks of information bits in parallel with N DM blocks. Each of the N blocks outputs one or more encoded information bits in each of the NDM blocks, and a total number of information bits output by the N DM blocks is less than k. The UE then performs a second round of parallel DM encoding using k′ information bits that were not encoded in the first round of DM encoding. The second round of parallel DM encoding includes a same encoding process as implemented in the first round of parallel DC encoding.
Abstract:
Certain aspects of the present disclosure provide techniques for allocating channel state information (CSI) processing unit (CPU) for user equipment (UE) initiated CSI. For example, the UE may receive an indication from a network entity (e.g., a base station or gNB) configuring the UE with a number of one or more CPUs allowed to be occupied for UE-initiated CSI feedback. The UE uses the at least one of the CPUs to calculate UE-initiated CSI feedback. The UE transmits at least one report including the UE-initiated CSI feedback if one or more conditions are met, such as when a mismatch between a CSI metric for a scheduled physical downlink shared channel (PDSCH) and a CSI metric calculated as part of the UE-initiated CSI feedback is equal to or exceeding a threshold value.