摘要:
A camera system acquires multiple optical characteristics at multiple resolutions of a scene. The camera system includes multiple optical elements arranged as a tree having a multiple of nodes connected by edges. the nodes represent optical elements sharing a single optical center, and the edges representing light paths between the nodes. The tree has the following structure: a single root node acquiring a plenoptic field originating from a scene; nodes with a single child node represent filters, lenses, apertures, and shutters; nodes with multiple child nodes represent beam splitters and leaf nodes represent imaging sensors. Furthermore, a length of the light paths from the roof node to each leaf nodes can be equal.
摘要:
A method renders a model of an object by first acquiring, in an acquisition space, a reflectance field of the object. The reflectance field includes a set of reflectance images of the object and a point model of the object. The model is deformed in an object space to generate a deformed model. For each point of the deformed model in the object space, the set of the reflectance images is queried in the acquisition space to obtain reflectance coefficients for each point. Each point of the deformed model is then shaded according to the corresponding reflectance coefficients to generate an image of the object reflecting the deforming.
摘要:
A system encodes videos acquired of a moving object in a scene by multiple fixed cameras. Camera calibration data of each camera are first determined. The camera calibration data of each camera are associated with the corresponding video. A segmentation mask for each frame of each video is determined. The segmentation mask identifies only foreground pixels in the frame associated with the object. A shape encoder then encodes the segmentation masks, a position encoder encodes a position of each pixel, and a color encoder encodes a color of each pixel. The encoded data can be combined into a single bitstream and transferred to a decoder. At the decoder, the bitstream is decoded to an output video having an arbitrary user selected viewpoint. A dynamic 3D point model defines a geometry of the moving object. Splat sizes and surface normals used during the rendering can be explicitly determined by the encoder, or explicitly by the decoder.
摘要:
A method models a three-dimensional object with a compressed surface reflectance field. Images of the object are acquired with multiple cameras for multiple viewpoints under different lighting conditions. The images are stored in a matrix Mr representing a surface reflectance field for the three-dimensional object. The matrix Mr is factorized into principle components pck and coefficients cfk. The principal components pck are stored in a matrix Mpc. The matrix Mpc is then factorized into principle components pcm and coefficients cfk which can be stored for each vertex V of a model of the three-dimensional object. The corresponding values of the principle components pcm, coefficients cfk, and coefficients cfk, respectively represent a compression of a surface map, which can be rendered from arbitrary viewpoints and under arbitrary lighting conditions.
摘要:
Provided is a method for representing a graphic object in a memory. A surface of the object is partitioned into a plurality of cells having a grid resolution related to an image plane resolution. Each cell is bounded by eight grid points related to the image plane resolution. A single zero-dimensional surface element is stored in the memory for each cell located on the surface of the object. The surface elements in adjacent cells are connected by links, and attributes of the portion of the object contained in the cell are assigned to each surface element and each link.
摘要:
Provided is a method for modeling a representation of a graphic object. A surface of the object is partitioned into a plurality of cells having a grid resolution related to an image plane resolution. A single zero-dimensional surface element is stored in the memory for each cell located on the surface of the object. The surface elements in adjacent cells are conected by links, and attributes of the portion of the object contained in the cell are assinged to each surface element and each link. The location of the attributed surface elements can be moved according to forces acting on the object.
摘要:
A method renders an object including multiple volumes and polygons. The method casts a ray through the object for each pixel of an image. Each rays is partitioned into segments according to surfaces of each volume. Color and opacity values are accumulated for each segment of each ray. Starting depths of each segment are merged and sorted, in an ascending order, into a combined depth list. Consecutive pairs of starting depths are taken to perform the following steps until done. A front clip plane and a back clip plane are defined for each pair of starting depths. Polygons between the front clip plane and a next volume surface are composited, voxels between the front clip plane and the back clip plane are composited, and polygons between the next volume surface and the back clip plane are composited.
摘要:
An apparatus illuminates samples in a volume rendering pipeline. The apparatus includes the following units. A gradient magnitude modulation unit produces an opacity, emissive, diffuse and specular modulation factor from a gradient magnitude vector of each sample. A reflectance mapping unit produces a diffuse intensity and a specular intensity from the gradient magnitude vector of each sample and an eye vector of the volume. A first arithmetic logic unit combines an opacity of each sample with the corresponding opacity modulation factor to generate modulated opacities. A second arithmetic logic unit combines an emissive coefficient with the emissive modulation factor of each sample to generate modulated emissive coefficients. A third arithmetic logic unit combines the diffuse intensity with the diffuse modulation factor of each sample to generate modulated diffuse intensities. A fourth arithmetic logic unit combines the specular intensity with the specular modulation factor of each sample to generate modulated specular intensities, and a lighting unit applies the modulated emissive coefficient, modulated diffuse and specular intensities to color components of the samples to illuminate the volume sample.
摘要:
A method and apparatus for providing real-time processing of voxels and real-time volume visualization of objects and scenes in a highly parallel and pipelined manner using a three dimensional (3-D) skewed memory, a modular fast bus, two dimensional (2-D) skewed buffers, 3-D interpolation and shading of data points, and a ray projection cone. The method and apparatus permit investigation and viewing of real-time static (3-D) and dynamic (4-D) high resolution volumetric data sets such as those found in medical imaging, biology, non-destructive quality assurance, scientific visualization, computer aided design (CAD), flight simulation, realistic graphics and the like. The method and apparatus implement ray-casting, a powerful volume rendering technique. Viewing rays are cast from the viewing position into a cubic frame buffer. At evenly spaced sample points along each viewing ray, the data is tri-linearly interpolated using values of surrounding voxels. Central differences of voxels around the sample points yield a gradient which is used as a surface normal approximation. Using the gradient and the interpolated sample values, a local shading model is applied and a sample opacity is assigned. Finally, ray samples along the ray are composited into pixel values and provided to a display device to produce an image.
摘要:
A method and system acquire and display light fields. A continuous light field is reconstructed from input samples of an input light field of a 3D scene acquired by cameras according to an acquisition parameterization. The continuous light is reparameterized according to a display parameterization and then prefiltering and sampled to produce output samples having the display parametrization. The output samples are displayed as an output light field using a 3D display device. The reconstruction can be performed by interpolating the input samples having the different views.