Abstract:
An object recognition apparatus includes a first spectrometer configured to obtain a first type of spectrum data from light scattered, emitted, or reflected from an object; a second spectrometer configured to obtain a second type of spectrum data from the light scattered, emitted, or reflected from the object, the second type of spectrum data being different from the first type of spectrum data; an image sensor configured to obtain image data of the object; and a processor configured to identify the object using data obtained from at least two from among the first spectrometer, the second spectrometer, and the image sensor and using at least two pattern recognition algorithms.
Abstract:
Disclosed is an image fusion method and apparatus. The fusion method includes detecting first feature points of an object in a first image frame from the first image frame; transforming the first image frame based on the detected first feature points and predefined reference points to generate a transformed first image frame; detecting second feature points of the object in a second image frame from the second image frame; transforming the second image frame based on the detected second feature points and the predefined reference points to generate a transformed second image frame; and generating a combined image by combining the transformed first image frame and the transformed second image frame.
Abstract:
Face recognition of a face, to determine whether the face correlates with an enrolled face, may include generating a personalized three-dimensional (3D) face model based on a two-dimensional (2D) input image of the face, acquiring 3D shape information and a normalized 2D input image of the face based on the personalized 3D face model, generating feature information based on the 3D shape information and pixel color values of the normalized 2D input image, and comparing the feature information with feature information associated with the enrolled face. The feature information may include first and second feature information generated based on applying first and second deep neural network models to the pixel color values of the normalized 2D input image and the 3D shape information, respectively. The personalized 3D face model may be generated based on transforming a generic 3D face model based on landmarks detected in the 2D input image.
Abstract:
A method of recognizing a feature of an image may include receiving an input image including an object; extracting first feature information using a first layer of a neural network, the first feature information indicating a first feature corresponding to the input image among a plurality of first features; extracting second feature information using a second layer of the neural network, the second feature information indicating a second feature among a plurality of second features, the indicated second feature corresponding to the first feature information; and recognizing an element corresponding to the object based on the first feature information and the second feature information.
Abstract:
A facial verification method and apparatus is disclosed. The facial verification method includes detecting a face region in an input image, determining whether the detected face region represents a partial face, in response to a determination that the detected face region represents the partial face, generating a synthesized image by combining image information of the detected face region and reference image information, performing a verification operation with respect to the synthesized image and predetermined first registration information, and indicating whether facial verification of the input image is successful based on a result of the performed verification operation.
Abstract:
At least one example embodiment discloses a method of extracting a feature from an input image. The method may include detecting landmarks from the input image, detecting physical characteristics between the landmarks based on the landmarks, determining a target area of the input image from which at least one feature is to be extracted and an order of extracting the feature from the target area based on the physical characteristics and extracting the feature based on the determining.
Abstract:
A user verification apparatus may perform user verification using multiple biometric verifiers. The user verification apparatus may set a termination stage of one or more biometric verifiers. Multiple biometric verifiers may be used to generate outputs, for which separate termination stages are set to establish a particular combination of set termination stages associated with the multiple biometric verifiers, and the user verification apparatus may fuse outputs of the biometric verifiers based on the particular combination of set termination stages. The user verification apparatus may verify a user based on a result of the fusing, and an unlocking command signal may be generated based on the verifying. The unlocking command signal may be generated to selectively grant access, to the verified user, to one or more elements of a device. The device may be a vehicle.
Abstract:
A fingerprint recognition based authentication method and apparatus is disclosed. The authentication apparatus may obtain an input fingerprint from a touch input of a user, determine an input number corresponding to the input fingerprint using preregistered fingerprint-number mapping information, and authenticate the user based on whether an input number sequence corresponding to an input fingerprint sequence is identical to a reference number sequence.
Abstract:
An authentication method and apparatus using a transformation model are disclosed. The authentication method includes generating, at a first apparatus, a first enrolled feature based on a first feature extractor, obtaining a second enrolled feature to which the first enrolled feature is transformed, determining an input feature by extracting a feature from input data with a second feature extractor different from the first feature extractor, and performing an authentication based on the second enrolled feature and the input feature.
Abstract:
A liveness detection method and apparatus, and a facial verification method and apparatus are disclosed. The liveness detection method includes detecting a face region in an input image, measuring characteristic information of the face region, adjusting the measured characteristic information in response to the characteristic information not satisfying a condition, and performing a liveness detection on the face region with the adjusted characteristic information upon the measured characteristic information not satisfying the condition.