Abstract:
An OLED device includes a substrate, a semiconductor element on the substrate and including an active layer, a first gate electrode on the active layer, a second gate electrode on the first gate electrode, and source and drain electrodes, a wiring connection structure electrically connected to the semiconductor element and including an active layer pattern spaced from the active layer and corresponding to a first region, a second region, a third region between the first region and the second region, and a fourth region, a first gate electrode pattern overlapping the active layer pattern and expose active pattern layer at the first region and the second region, and a second gate electrode pattern contacting a portion of the first gate electrode pattern in the third region, and contacting the active layer pattern in the first region, and a sub-pixel structure on the semiconductor element and the wiring connection structure.
Abstract:
A display apparatus includes a substrate, a display unit on the substrate and including a display region including a first display region having a plurality of first pixel circuits configured to drive a plurality of first light-emitting devices, and a second display region having a plurality of second pixel circuits configured to drive a plurality of second light-emitting devices, a plurality of scan lines crossing the display region in a first direction, and a plurality of data lines crossing the display region in a second direction, wherein resolutions of the first and second display regions are different, wherein a total number of the first light-emitting devices driven by one of the first pixel circuits is different from a total number of the second light-emitting devices driven by one of the second pixel circuits, and wherein the display unit and the substrate define at least one through portion in the second display region.
Abstract:
A thin film transistor includes a substrate, a semiconductor layer, a first insulating layer, and a gate electrode. The gate electrode overlaps the semiconductor layer. The thin film transistor includes a second insulating layer on the gate electrode, and an electrode structure on the second insulating layer. The electrode structure is connected to the gate electrode through a via hole. The thin film transistor includes a source electrode and a drain electrode passing through the first insulating layer and the second insulating layer to be connected to the semiconductor layer. The semiconductor layer includes a channel area overlapping the gate electrode, a source area connected to the source electrode, a drain area connected to the drain electrode, a lightly doped source area, and a lightly doped drain area. The electrode structure overlaps at least one of the lightly doped source area or the lightly doped drain area.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes a plurality of pixels, each pixel including a driving circuit that includes a driving transistor and a storage capacitor electrically connected to the driving transistor. The driving transistor includes a driving active layer and a first electrode, the first electrode insulated from the driving active layer and disposed over at least a portion of the driving active layer. The storage capacitor includes a first capacitor including the first electrode and a second electrode facing the first electrode and a second capacitor comprising the second electrode and a third electrode facing the second electrode.