Abstract:
A display device includes: a substrate including a main display area and an edge display area bent with respect to a first axis from the main display area; and a wiring including a plurality of sub-wirings arranged in a direction intersecting the first axis in the edge display area; an insulating layer including a plurality of contact holes and covering the plurality of sub-wirings; and a connection wiring disposed on the insulating layer and connecting the plurality of sub-wirings through the plurality of contact holes.
Abstract:
A display apparatus includes a substrate a first pixel circuit arranged on the substrate, and a plurality of light-emitting elements arranged in a matrix on the substrate. The first pixel circuit is configured to commonly drive a first light-emitting element located in a first row and a second light-emitting element located in a second row different from the first row from among the plurality of light-emitting elements.
Abstract:
An electronic apparatus includes a display panel including a first surface portion, a second surface portion, and a third surface portion which is disposed between the first surface portion and the second surface portion. The electronic apparatus operates in one of a first mode and a second mode. When the electronic apparatus operates in the first mode, the third surface portion is bent from the first surface portion, and the second surface portion is bent from the third surface portion. When the electronic apparatus operates in the second mode, the first surface portion, the second surface portion, and the third surface portion are substantially parallel to each other.
Abstract:
A display device includes: a substrate; an inorganic insulating layer arranged in a display region, the inorganic insulating layer having a lower valley as an opening or a groove arranged in a region between a first pixel circuit and a second pixel circuit adjacent to each other; a first organic planarization layer arranged over entire regions of the first pixel circuit and the second pixel circuit, the first organic planarization layer filling the lower valley; and a connection wire arranged on the first organic planarization layer, the connection wire connecting the first pixel circuit to the second pixel circuit.
Abstract:
A display device includes a reinforced substrate; and a display layer disposed on the reinforced substrate and configured to display an image, wherein the reinforced substrate includes a first reinforced layer including a flexible region including a plurality of patterns spaced apart from one another; and a first substrate disposed on the first reinforced layer and has flexibility. A modulus of elasticity of the first reinforced layer is greater than a modulus of elasticity of the first substrate.
Abstract:
A display device includes a substrate comprising a first plastic layer, a second plastic layer on the first plastic layer, and an inorganic layer between the first plastic layer and the second plastic layer, an inorganic embossed layer on the substrate and comprising a plurality of mountain parts, an organic layer on the inorganic embossed layer, an inorganic buffer layer on the organic layer, a thin film transistor on the inorganic buffer layer, and a display element electrically connected to the thin film transistor.
Abstract:
A display apparatus includes a substrate, a display unit over the substrate, the display unit including a thin film transistor, a display element connected to the thin film transistor, and a planarization layer between the thin film transistor and the display element. The display unit includes a display area to display an image, and a non-display area outside of the display area. The non-display area includes a plurality of voltage lines. The planarization layer extends into the non-display area and includes a divisional portion that divides the planarization layer into a central portion and a peripheral portion. The divisional portion surrounds the display area. An interlayer insulating film is between voltage lines at intersections of the voltage lines with each other in the divisional portion. A protecting film covers a side of the interlayer insulating film in the divisional portion.
Abstract:
A thin film transistor substrate and an organic light-emitting diode display including the same are disclosed. In one aspect, the TFT substrate includes substrate and a TFT located on the substrate. The TFT includes a lower gate electrode, a first insulating layer covering the lower gate electrode, an oxide semiconductor layer located on the first insulating layer, a first electrode located on the oxide semiconductor layer and having an island shape, a second electrode located on the oxide semiconductor layer and surrounding the first electrode, a second insulating layer at least partially covering the oxide semiconductor layer; and an upper gate electrode located on the second insulating layer. The oxide semiconductor layer includes a first region, a second region surrounding the first region, and a third region interposed between the first and second regions.
Abstract:
A thin film transistor substrate and an organic light-emitting diode display including the same are disclosed. In one aspect, the TFT substrate includes substrate and a TFT located on the substrate. The TFT includes a lower gate electrode, a first insulating layer covering the lower gate electrode, an oxide semiconductor layer located on the first insulating layer, a first electrode located on the oxide semiconductor layer and having an island shape, a second electrode located on the oxide semiconductor layer and surrounding the first electrode, a second insulating layer at least partially covering the oxide semiconductor layer; and an upper gate electrode located on the second insulating layer. The oxide semiconductor layer includes a first region, a second region surrounding the first region, and a third region interposed between the first and second regions.
Abstract:
A compound represented by Formula 1. An organic electric element includes a first electrode, a second electrode, and an organic material layer between the first electrode and the second electrode. The organic material layer includes the compound. When the organic electric element includes the compound in an organic material layer, luminous efficiency, stability, and life span can be improved.