Abstract:
A flexible display panel, a flexible display device, and a fabrication method of the flexible display panel are provided. The flexible display panel comprises a stacked structure having a plurality of layers comprising a flexible substrate, a light-emitting device layer, and a polarizing layer stacked in a preset order. The flexible display panel further includes at least one upper-side resistive force-sensitive electrode disposed on a layer above a neutral plane of the stacked structure, and at least one lower-side resistive force-sensitive electrode disposed on a layer below the neutral plane.
Abstract:
The embodiment of the disclosure discloses a touch substrate, a touch display panel and a method for calculating touch pressure. The touch substrate comprises at least two semiconductor pressure sensors, a bias voltage applying circuit and a voltage detecting circuit, wherein the bias voltage applying circuit is used for applying bias voltage to each semiconductor pressure sensor; the voltage detecting circuit is used for acquiring strain voltages of each semiconductor pressure sensor. A first straight line connecting the first connecting terminal and the second connecting terminal intersects a second straight line connecting the third connecting terminal and the fourth connecting terminal. According to the technical scheme of the disclosure, the semiconductor pressure sensors can be integrated inside the touch display panel.
Abstract:
An array substrate and a drive method thereof, a touch control display and a display apparatus are provided. An array substrate includes, in part, a gate line layer configured with a multitude of gate lines, and a common electrode layer configured with a multitude of common electrodes. The common electrodes further operate as touch control electrodes with a projection on the array substrate along a direction substantially perpendicular to the array substrate. The projection covers n gate lines, where n is a positive integral number. At least one of the touch control electrodes comprises n sub common electrodes each having a projection on the array substrate along the direction substantially perpendicular to the array substrate covering one of the gate lines. Accordingly, less flicks or stripes appear on the display.
Abstract:
An array substrate is disclosed. The Array substrate includes gate and data lines, where the gate lines and the data lines cross each other. The pixel units include pixel electrodes and common electrodes, and the common electrode comprises a first slot extending in a direction of the data lines. The first slot at least partially overlaps at least one of the pixel electrodes. In addition, the gate lines each include an aperture region, where the aperture region of each gate line at least partially overlaps at least one of the first slots. Furthermore, shielding electrodes and shielding branch electrodes are provided in the direction of the data lines, where the shielding electrodes at least partially overlap the data lines, and where the shielding branch electrodes are provided in the aperture region, and the shielding branch electrodes at least partially overlap the gate lines.
Abstract:
A touch panel is disclosed. The touch panel is detects a position of a stylus, which includes first and second resonance circuits. The touch panel includes first and second coils respectively extending in first and second directions. Each of the first coils emits a first signal having a first frequency and receives a second signal having a second frequency, where emitting the first signal and receiving the second signal are successively and respectively performed by the plurality of second coils. In addition, each of second coils emits a second signal having the second frequency and receives a first signal having the first frequency, where emitting the second signal and receiving the first signal are successively performed. The first resonance circuit of the stylus generates the first signal after receiving the first signal, and the second resonance circuit of the electromagnetic stylus generates the second signal after receiving the second signal.
Abstract:
One inventive aspect is a touch control liquid crystal display device. The device includes a color film substrate, a thin film transistor array substrate, and a liquid crystal layer between the color film substrate and the thin film transistor array substrate. The color film substrate includes a grid-shaped black matrix layer, a touch control layer, and a color film layer. The touch control layer includes metal grid electrodes in a rectangle, where the metal grid electrodes include metal lines intersecting transversely and vertically. In addition, the metal grid electrodes include drive electrodes and sense electrodes. The drive electrodes are connected together through first metal connection lines in a first direction, and the sense electrodes are connected together through second metal connection lines in a second direction. In addition, the projection of the metal grid electrodes falls into the projection of the black matrix layer in the light transmission direction.
Abstract:
An in-cell touch panel LCD module (100) and a method for driving the same includes a common electrode layer including first and second common electrodes. A control circuit divides the frame time period into a display time period and a touch control time period. A display signal is applied to the common electrode layer during the display time period for a normal LCD display. First and second touch control signals are applied to the first and second common electrodes, respectively, during the touch control time period, so that the electric potential of the first common electrode equals to that of the driving line and the electric potential of the second common electrode equals to that of the sensing line.
Abstract:
The present disclosure includes a display panel and a display apparatus. The display panel includes a pre-charge circuit, a data-signal line and a pixel circuit, where the pre-charge circuit is electrically connected to the pixel circuit through the data-signal line; and before a data signal is written into the pixel circuit, the pre-charge circuit provides a pre-charge voltage signal to the data-signal line, and the data-signal line is charged through the pre-charge voltage signal.
Abstract:
A display panel including a substrate; a light-emitting element; and a light-shielding layer. The light-emitting element is located at a side of the substrate and includes a primary light-emitting element and an auxiliary light-emitting element. The light-shielding layer is located at a side of the light-emitting element facing away from the substrate and includes a first opening corresponding to the primary light-emitting element. The auxiliary light-emitting element is arranged at a periphery of the primary light-emitting element.
Abstract:
A method for driving a display panel and a display apparatus are provided. The display panel includes a display region including a fingerprint recognition region and includes subpixels located in the display region, and the subpixels include first subpixels located in the fingerprint recognition region and used as a light source for fingerprint recognition. In a first mode, the subpixels are scanned at a first frequency, and in the second mode, the subpixels are scanned at a second frequency. The second frequency is greater than the first frequency. The method includes: when the display panel is in the first mode, monitoring whether the display panel receives a fingerprint recognition requirement, and if yes, controlling the display panel to enter a trigger state; and when the display panel is in the trigger state, scanning the first subpixels at a frequency greater than the first frequency.