Abstract:
The invention relates to an electronic image pickup system whose depth dimension is extremely reduced, taking advantage of an optical system type that can overcome conditions imposed on the movement of a zooming movable lens group while high specifications and performance are kept. The electronic image pickup system comprises an optical path-bending zoom optical system comprising, in order from its object side, a 1-1st lens group G1-1 comprising a negative lens group and a reflecting optical element P for bending an optical path, a 1-2nd lens group G1-2 comprising one positive lens and a second lens group G2 having positive refracting power. For zooming from the wide-angle end to the telephoto end, the second lens group G2 moves only toward the object side. The electronic image pickup system also comprises an electronic image pickup device I located on the image side of the zoom optical system.
Abstract:
There is provided an image forming optical system in which, it is possible to achieve both, the small-sizing and slimming of an optical system, and a favorable correction of various aberrations, mainly the chromatic aberration.In an image forming optical system including a lens component in which, a shape of another optical surface C of an intermediate layer L2 which is made of a transparent material having Abbe's number νd2 which is in a close contact with one optical surface B of a lens L1 which is made of a transparent material having Abbe's number νd1, is an aspheric shape differing from (a shape of) the optical surface B, and furthermore, a lens L3 which is made of a transparent material having Abbe's number νd3 is in a close contact with the optical surface C, the following conditions are satisfied 0.012
Abstract:
In an image forming optical system which includes in order from an object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, and a fourth lens group G4, and which includes maximum of five lens groups, and at the time of zooming from a wide angle end to a telephoto end, when a focal length of the overall image forming optical system is in a range of 1.2 fw to 1.8 fw, the first lens group G1 moves to be positioned more toward the object side than a position at the wide angle end, in a rectangular coordinate system in which, a horizontal axis is let to be νd(LA) and a vertical axis is let to be nd(LA), when a straight line expressed by nd(LA)=a×Δd(LA)+b(LA)(provided that a=−0.0267) is set, the image forming optical system satisfies a predetermined conditional expression.
Abstract:
To provide an image forming optical system that can achieve good correction of chromatic aberration, which is seriously needed particularly when the zoom ratio is high, while achieving slimness and a high zoom ratio and to provide an electronic image pickup apparatus equipped with such an image forming optical system, an image forming optical system has a lens group A including a lens component made up of a positive lens LA and a negative lens LB cemented together and having a negative refracting power as a whole. The lens group A is arranged between a lens group I closest to the object side and an aperture stop. The distance between the lens group I and the lens group A changes for zooming. The lens component has an aspheric cemented surface, and a certain condition concerning the shape of the aspheric surface is satisfied.
Abstract:
In an image forming optical system having a positive lens group, a negative lens group, and an aperture stop, the positive lens group being disposed at an image-plane side of the aperture stop and having a cemented lens, and when a straight line indicated by Nd=α×νd+β (where, α=−0.017) is set, Nd and νd of at least one lens forming the cemented lens are included in both an area which is determined by a line when a lower limit value is in a range of a following conditional expression (1), and a line when an upper limit value is in a range of the following conditional expression (1), and in an area determined by following conditional expressions (2) and (3) 1.45
Abstract:
An optical system enables images of a wide range of natural subjects to be well reproduced with their colors, and provides an image pickup system including, at least, an image pickup optical system, an electronic image pickup device having three or more different spectral characteristics to obtain a color image, and a controller for implementing signal processing or image processing on the basis of an output from the electronic image pickup device. The optical element that takes part in the determination of a focal length in said image pickup system includes an optical element making use of a refraction phenomenon alone. The 400-nm wavelength input/output ratio is 10% or less with respect to an input-output ratio for a 400-nm to 800-nm wavelength at which an output signal strength ratio with respect to an input quantity of light is highest when the input quantity of light is defined by the quantity of a light beam emanating from the same object point and entering the image pickup optical system and the output signal strength is defined by the strength of a signal produced from the controller in response to the light beam.
Abstract:
A zoom optical system has, in order from the object side, a first lens unit with negative refracting power, including one biconcave-shaped lens component, a second lens unit with positive refracting power, a third lens unit with negative refracting power, and a fourth lens unit with positive refracting power. When the magnification of the zoom optical system is changed, relative distances between individual lens units are varied and the zoom optical system satisfies the following condition: 0.2≦dCD/fw≦1.2 where dCD is spacing between the third lens unit and the fourth lens unit on the optical axis in infinite focusing at a wide-angle position and fw is the focal length of the entire system of the zoom optical system at the wide-angle position.
Abstract:
The invention relates to a zoom lens with an easily bendable optical path, which has high optical specification performance such as a high zoom ratio, a wide-angle arrangement, a small F-number and reduced aberrations. The zoom lens comprises a first lens group G1 that remains fixed during zooming, a second lens group G2 that has negative refracting power and moves during zooming, a third lens group G3 that has positive refracting power and moves during zooming, and a fourth lens group G4 that has positive refracting power and moves during zooming and focusing. The first lens group comprises, in order from an object side thereof, a negative meniscus lens component convex on an object side thereof, a reflecting optical element for bending an optical path and a positive lens. Upon focusing on an infinite object point, the fourth lens group G4 moves in a locus opposite to that of movement of the third lens group G3 during zooming.
Abstract:
1. An electronic imaging apparatus comprises an imaging optical system, and an imaging device which converts an object image obtained via the imaging system to an electric signal. All of medium of optical elements which is disposed in a space between a most object side of the imaging system and the imaging device is constituted with optically isotropic medium. A diameter of a point image at the open F value of the imaging system is bigger than a pitch of a picture element. The following condition is satisfied; F>1.4·a(0
Abstract:
A zoom lens includes, in order from the object side, the first lens unit consisting of one negative lens component in which a plurality of lens components are cemented to one another and the second lens unit including one negative lens component and having positive refracting power as a whole. In this case, the zoom lens satisfies the following condition: 0.15