Abstract:
The present invention provides an inverter controller comprising a drive circuit that generates a plurality of switch drive signals for inverter applications. In some exemplary embodiments, the drive circuit operates by reversing the command level of an error signal. In other embodiments, the drive circuit operates by using a half period of a sawtooth signal. In still other embodiments, the drive circuit operates by using a double period opposite shifting pulses method. The present invention also provides a PWM signal generator circuit that generates periodic PWM switch drive signals symmetrical to the minimum or maximum of a sawtooth waveform.
Abstract:
A display system includes a touch screen and a driving circuit. The touch screen includes touch sensors and a light source. A converter of the driving circuit receives an input voltage and provides a first output voltage to the light source according to a driving signal. A controller of the driving circuit converts the first output voltage to a second output voltage to drive the touch sensors, compares a voltage feedback signal indicating whether the second output voltage reaches a desired voltage level with a current feedback signal indicating whether a current through the light source reaches a desired current level, selects a feedback signal from the voltage feedback signal and the current feedback signal according to the comparison, and generates the driving signal to adjust the first output voltage according to the selected feedback signal.
Abstract:
A controller for regulating a current through a light-emitting diode (LED) light source includes a first reference pin for receiving a first reference signal indicative of a target average level, and a dimming control pin for receiving a dimming signal. The controller regulates an average level of the current to the target average level. The current is regulated according to the first reference signal and a ramp signal if the dimming signal has a first level. The ramp signal is synchronized with the dimming signal. The current is cut off if the dimming signal has a second level.
Abstract:
A circuit structure for LCD backlight is disclosed in the present invention. The circuit structure includes an inverter topology, a current balance circuit, and a plurality of loads. The current balance circuit is coupled to the plurality of loads and capable of balancing current of N loads by using N/2−1 balance chokes. The circuit structure may further include a protection circuit which is coupled to the low voltage sides of the plurality of loads. The protection circuit is capable of sensing lamp voltages and providing a feedback signal to a controller. Furthermore, the protection circuit is composed of count-reduced and cost-competitive electronic elements.
Abstract:
A circuit for driving a load includes a power line, converter circuitry, and a controller. The power line is operable for providing an input current and an input voltage. The converter circuitry coupled to the power line is operable for converting the input voltage to a regulated voltage to drive the load, and for providing a current detection signal indicating whether a converter current flowing through the converter circuitry drops to a predetermined level. The controller coupled to the converter circuitry is operable for correcting a power factor of the circuit based on the current detection signal and the input voltage such that a waveform of the input current follows a waveform of the input voltage.
Abstract:
A method according to one embodiment may include supplying power to plurality of External Electrode Fluorescent Lamps (EEFLs). The method of this embodiment may also include generating signals proportional to the voltage of each EEFL. The method of this embodiment may also include generating a feedback signal indicative of the state of one or more of the plurality of EEFLs based on, at least in part, the value of at least one signal proportional to the voltage of each EEFL. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.
Abstract:
Embodiments of the invention provide a DC/DC converter. The DC/DC converter includes a transformer, a switch controller and a driver controller. The transformer has a primary winding coupled to a power source, a first secondary winding provides a first output voltage to a first load, and a second secondary winding provides a second output voltage to a second load. The switch controller is coupled to the primary winding and controls a first switch coupled to the primary winding to control input power to the primary winding and to regulate the first output voltage based on a power requirement of the first load. The driver controller is coupled to the second secondary winding and generates a pulse modulation signal to alternately turn on and turn off a second switch coupled to the second secondary winding to regulate the second output voltage based on a power requirement of the second load.
Abstract translation:本发明的实施例提供一种DC / DC转换器。 DC / DC转换器包括变压器,开关控制器和驱动器控制器。 变压器具有耦合到电源的初级绕组,第一次级绕组向第一负载提供第一输出电压,而第二次级绕组向第二负载提供第二输出电压。 开关控制器耦合到初级绕组并且控制耦合到初级绕组的第一开关以控制到初级绕组的输入功率并且基于第一负载的功率需求来调节第一输出电压。 驱动器控制器耦合到第二次级绕组,并且产生脉冲调制信号以交替地接通和关断耦合到第二次级绕组的第二开关,以基于第二负载的功率需求来调节第二输出电压。
Abstract:
A power system includes a switching circuit, a resonant tank, a feedback circuit, and controller circuitry. The switching circuit including a first switch and a second switch provides a first AC signal. The resonant tank coupled to the switching circuit receives the first AC signal and generating a second AC signal for powering a load. The feedback circuit coupled to the load monitors an electrical condition of the load and provides a feedback signal. The controller circuitry coupled to the converter controls the switching circuit according to the feedback signal so as to control the power to the load. The controller circuitry is integrated in a first die. The first switch is integrated in a second die, and the second switch is integrated in a third die. The first die, said second die and said third die are mounted on and electrically interconnected to a platform compatible with through-hole technology. The platform and the resonant tank are further assembled on a printed circuit board.
Abstract:
A driving circuit for powering a plurality of light-emitting diode (LED) light sources includes a power converter and a plurality of current balance controllers. The power converter receives an input voltage and provides a regulated voltage to the LED light sources. The current balance controllers coupled to the power converter control a plurality of currents through the LED light sources respectively. The current balance controllers receive a first reference signal indicative of a target average level and a second reference signal indicative of a maximum transient level, and regulate an average current of each of the currents to the target average level and a transient level of each of the currents within the maximum transient level.