Abstract:
Novel heteroaromatic compounds of formula (I): wherein A1, A2, A3, R1, R2, G1, G2, Q1 and Q2 are as defined in claim 1; or salts or N-oxides thereof. Furthermore, the present invention relates to processes for preparing compounds of formula (I), to insecticidal, acaricidal, molluscicidal and nematicidal compositions comprising them and to methods of using them to combat and control insect, acarine, mollusc and nematode pests.
Abstract:
A compound of formula (I), wherein A1, A2, A3, A4, R1, R2, R3, G1, G2, G3 and Q are as defined in claim 1; or a salt or N-oxide thereof. Furthermore, the present invention relates to processes and intermediates for preparing compounds of formula (I), to insecticidal, acaricidal, molluscicidal and nematicidal compositions comprising them and to methods of using them to combat and control insect, acarine, mollusc and nematode pests.
Abstract:
A compound of formula (I) wherein A1, A2, A3, A4, G1, G2, R1, R2, R3, R4, Q1, Y1, Y2, Y3 and Y4 are as defined in claim 1; or a salt or TV-oxide thereof. Furthermore, the present invention relates to processes and intermediates for preparing compounds of formula (I), to insecticidal, acaricidal, nematicidal or molluscicidal compositions comprising them and to methods of using them to combat and control insect, acarine, nematode or mollusc pests.
Abstract:
Agrochemical concentrates having a continuous water-containing single phase, where said continuous phase also comprises an oil-based adjuvant and a hydrotrope capable of solubilizing said adjuvant in said continuous phase, a process for making these concentrates and a method of using these concentrates.
Abstract:
The present invention relates to heterocyclic compounds of formula I which have microbiocidal activity, in particular fungicidal activity as well as methods of using the compounds of formula (I) to control microbes: wherein A is x-C(R10R11)—C(═O)—, x-C(R12R13)—C(═S)—, x-O—C(═O)—, x-O—C(═S)—, x-N(R14)—C(═O)—, x-N(R15)—C(═S)—, x-C(R16R17)—SO2— or X—N═C(R30)—, in each case x indicates the bond that is connected to R1; T is CR18 or N; Y1, Y2, Y3, and Y4 are independently CR19 or N; Q is O or S; n is 1 or 2; p is 1 or 2, providing that when n is 2, p is 1. R1 is phenyl, pyridyl, imidazolyl, or pyrazolyl; wherein the phenyl, pyridyl, imidazolyl and pyrazolyl are each optionally substituted by 1 to 3 substituents independently selected from C1-C4 alkyl, C1-C4 haloalkyl, halogen, cyano, hydroxy and amino; R2, R3, R4, R5, R6, R7, R10, R11, R12, R13, R16, R17, R18, R19 and R30 each independently are hydrogen, halogen, cyano, C1-C4alkyl, or C1-C4haloalkyl; R8, R14 and R15 each independently are hydrogen or C1-C4alkyl; and R9 is phenyl, benzyl or group (a): wherein the phenyl, benzyl and group (a) are each optionally substituted with 1 to 3 substituents independently selected from C1-C4 alkyl, C1-C4 haloalkyl, halogen, cyano, hydroxy and amino; or a salt or a N-oxide thereof.
Abstract:
The present invention relates to a compound of formula (I) wherein the substituents have the definitions as defined in claim 1 or a salt or a N-oxide thereof, their use and methods for the control and/or prevention of microbial infection, particularly fungal infection, in plants and to processes for the preparation of these compounds.
Abstract:
The present invention relates to a continuous process for producing a haloalkenone ether of the Formula (I) wherein R1 is C1-C6 haloalkyl, R2 is a C1-C6 alkyl or phenyl, the process comprising:—(i) reacting, in a first continuous stirred tank reactor comprising a solvent, a halide of Formula (II) wherein R1 is as previously defined and R3 is halogen, with a vinyl ether of Formula (III) wherein R2 is as previously defined, to form an intermediate compound of Formula (IV), wherein the concentration of the vinyl ether of Formula (III) in the reaction mass is 15% or less w/w; and (ii) transferring the reaction mass from the first continuous stirred tank reactor into a subsequent continuous stirred tank reactor, wherein the conditions within the subsequent reactor permit the elimination of hydrogen halide (HR3) from the intermediate compound of Formula (IV) to provide the haloalkenone ether of Formula (I).
Abstract:
Disclosed is a method of improving the growth of plants wherein at least one compound of formula (I) wherein A is 2-chloropyrid-5-yl, 2-methylpyrid-5-yl, 1-oxido-3-pyridinio, 2-chloro-1-oxido-5-pyridinio, 2,3-dichloro-1-oxido-5-pyridinio, tetrahydrofuran-3-yl, 5-methyl-tetrahydrofuran-3-yl or 2-chlorothiazol-5-yl group, R is hydrogen, C1-C6alkyl, phenyl-C1-C4alkyl, C3-C6cycloalkyl, C2-C6alkenyl or C2-C6alkynyl; Y is —N(R)(R2) or SR2; R1 and R2 are independently of each other C1-C4-alkyl, C1-C4-alkenyl, —C(═O)—CH3 or benzyl; or together form a group —CH2—CH2—, —CH2—CH2—CH2—, —CH2—O—CH2—, —CH2—S—CH2—, —CH2—NH—CH2— or —CH2—N(CH3)—CH2—; and X is N—NO2 or N—CN or CH—NO2, or, where appropriate, a tautomer thereof, in each case in free from or in salt form; is applied to the plant or the locus thereof.
Abstract:
The invention includes an aqueous compatibilized herbicidal formulation. In typical embodiments, formulations comprise a diammonium salt of glyphosate and a sodium salt of fomesafen. The invention also includes storage and transport systems containing formulation embodiments. The invention also includes methods inhibiting unwanted plant growth.