Abstract:
A dispersion compensator for the compensation of chromatic dispersion in a multi-channel light signal is provided. The compensator includes a pair of optical structures each having a waveguide and a Bragg grating provided therein. The Bragg grating has a plurality of grating components, each associated with one or a few of the channels to be compensated. An optical assembly propagates the light signal sequentially through both optical structures. The periods of the grating components are selected to allow compensation of chromatic dispersion experienced by this particular channel or these particular channels, thereby taking into account the dispersion slope of the light signal. Tuning means are also provided in order to adjust the dispersion of the grating components of each optical structures, and proper selection of the tuning parameters allows tuning independently both the dispersion and dispersion slope.
Abstract:
All fiber construction Gires-Tournois interferometers for chromatic dispersion compensation of an optical signal are provided. The interferometers are made of overlapping chirped fiber Bragg gratings having a wide band reflectivity response. In one embodiment, a plurality of FBG interferometers can be cascaded for providing the chromatic dispersion compensation. In another embodiment, an FBG dispersion compensator provided with a pair of multi-cavity FBG interferometers is also provided. The dispersion compensator is provided with two temperature controlling means, each being operationally connected to one of the multi-cavity interferometer for thermo-optically shifting a spectral response thereof, thereby providing a tunable dispersion compensator capable of compensating for all orders of dispersion.
Abstract:
A tunable dispersion compensator for the compensation of the chromatic dispersion experienced by a single-channel or multi-channel light signal. The compensator includes a plurality of optical structures such as chirped Bragg gratings or combinations thereof, each having a characteristic dispersion profile. An optical coupling arrangement successively propagates the light signal in each of these structures, so that it accumulates the dispersion compensation effect of each. A tuning device jointly tunes the dispersion profile of each optical structure by applying a same tuning force thereto, preferably a temperature gradient.
Abstract:
The present invention discloses practical and power efficient assemblies for applying a temperature gradient to a fiber Bragg grating. An application of such assemblies is, for example, the active tuning of the chromatic dispersion of the grating. The temperature gradient is produced in a heat conductive element, with which the FBG is in continuous thermal contact, by elements controlling the temperature of the ends of the heat conductive element, thereby applying the temperature gradient to the FBG. A first preferred embodiment includes a heat recirculation member allowing the recirculation of heat between the two ends of the heat conductive elongated element, thereby providing a rapid and dynamical tuning of the temperature gradient with a minimal heat loss. A second embodiment provides isolation from the surrounding environment in order to decouple the desired temperature gradient from ambient temperature fluctuations, thereby improving the control of the optical response of a fiber grating.
Abstract:
An optical structure and devices based thereon for the compensation of chromatic dispersion in a multi-channel light signal are provided. The optical structure includes a waveguide and a Bragg grating provided therein. The Bragg grating has a plurality of grating components, each associated with one or a few of the channels to be compensated. The period of each grating component is selected to allow compensation of chromatic dispersion experienced by this particular channel or these particluar channels, thereby taking into account the wavelength-dependent dispersion slope of the light signal.
Abstract:
A method and a system for providing a low absorption Bragg grating along a grating region of an optical fiber are presented. The Bragg grating is written along the grating region by multiphoton absorption of ultrafast light pulses impinged on this grating region through a polymer coating of the optical fiber. The Bragg grating is then photobleached by propagating a photobleaching light beam along the optical fiber. The photobleaching light beam has optical parameters selected to reduce defects in the grating region induced by the writing of the Bragg grating in a substantially non-thermal regime.
Abstract:
Optical fiber filters and uses thereof are presented. In typical implementations, there is provided a FBG taking deleterious light out of a fiber core without reflecting it into the fiber core. It also allows the unhindered transmission of useful light at a wavelength outside of the spectral band covered by the deleterious light. The filter couples the incoming deleterious light to cladding modes propagating in the opposite direction without coupling the incoming useful light to core or cladding modes propagating in the opposite direction. The filter may for example be useful as a Raman or ASE filter in a laser cavity of other optical devices.
Abstract:
A semiconductor laser comprising a single mode laser cavity having a stack of semiconducting layers defining a transversal p-n junction is provided. A plurality of electrodes are coupled to corresponding sections of the laser cavity along the longitudinal light propagation direction, each corresponding section defining one of an amplification section or a modulation section. One or more DC sources are coupled to the electrodes associated with the amplification sections to forward-bias the p-n junction above transparency, so as to provide gain in the associated amplification sections. One or more modulation signal sources are coupled to the electrodes associated with the modulation sections, and apply a modulation signal across the p-n junction below transparency, the modulation signal providing a modulation of an output optical frequency of the semiconductor laser. Each modulation section is operated in photovoltaic mode.
Abstract:
Optical fiber filters and uses thereof are presented. In typical implementations, there is provided a FBG taking deleterious light out of a fiber core without reflecting it into the fiber core. It also allows the unhindered transmission of useful light at a wavelength outside of the spectral band covered by the deleterious light. The filter couples the incoming deleterious light to cladding modes propagating in the opposite direction without coupling the incoming useful light to core or cladding modes propagating in the opposite direction. The filter may for example be useful as a Raman or ASE filter in a laser cavity of other optical devices.
Abstract:
Optical fiber filters and uses thereof are presented. In typical implementations, there is provided a FBG taking deleterious light out of a fiber core without reflecting it into the fiber core. It also allows the unhindered transmission of useful light at a wavelength outside of the spectral band covered by the deleterious light. The filter couples the incoming deleterious light to cladding modes propagating in the opposite direction without coupling the incoming useful light to core or cladding modes propagating in the opposite direction. The filter may for example be useful as a Raman or ASE filter in a laser cavity of other optical devices.