Abstract:
A fine-tuning assembly for an optical grating in an optical fiber is provided. The fiber is mounted under tension in a hollow structure which has a sliding member longitudinally slideable therein. The fiber is attached to both the sliding member and hollow structure. A slanted passage is provided in the sliding member, forming a small angle with the transversal, and a wedge member is slideably inserted in this passage. To fine-tune the spectral response of the grating, the wedge member is transversally displaced without any longitudinal displacement, preferably by the action of screws, thereby pushing on its walls to longitudinally slide the sliding member and adjust the tension in the fiber.
Abstract:
An athermally packaged optical fiber device, such as a Bragg grating, is provided. The device includes a hollow structure, and a free and a threaded member projecting in the hollow structure from both ends. The optical fiber is mounted in tension inside the hollow structure through longitudinal fiber-receiving bores in both members, and has an anchor point affixed to each member with the grating therebetween. The anchor point of the threaded member is provided outside of the hollow structure, making the device more compact. The free and threaded members are rotatable together to adjust the resonant wavelength of the grating, and a nut may be provided to allow a fine-tuning. The hollow structure, free member and threaded member have a coefficient of thermal expansion selected so that they together compensate for the temperature dependency of the Bragg wavelength.
Abstract:
A tunable dispersion compensator for the compensation of the chromatic dispersion experienced by a single-channel or multi-channel light signal. The compensator includes a plurality of optical structures such as chirped Bragg gratings or combinations thereof, each having a characteristic dispersion profile. An optical coupling arrangement successively propagates the light signal in each of these structures, so that it accumulates the dispersion compensation effect of each. A tuning device jointly tunes the dispersion profile of each optical structure by applying a same tuning force thereto, preferably a temperature gradient.
Abstract:
The present invention discloses practical and power efficient assemblies for applying a temperature gradient to a fiber Bragg grating. An application of such assemblies is, for example, the active tuning of the chromatic dispersion of the grating. The temperature gradient is produced in a heat conductive element, with which the FBG is in continuous thermal contact, by elements controlling the temperature of the ends of the heat conductive element, thereby applying the temperature gradient to the FBG. A first preferred embodiment includes a heat recirculation member allowing the recirculation of heat between the two ends of the heat conductive elongated element, thereby providing a rapid and dynamical tuning of the temperature gradient with a minimal heat loss. A second embodiment provides isolation from the surrounding environment in order to decouple the desired temperature gradient from ambient temperature fluctuations, thereby improving the control of the optical response of a fiber grating.