Abstract:
A plasma display panel including a sustain electrode pair comprising an X electrode and a Y electrode that are separated from each other by a discharge gap, and a barrier rib formed on a second substrate facing the first substrate and including first barrier ribs and second barrier ribs that define a discharge cell. Assuming that L is a sum of a width of the discharge gap and widths of the X and Y electrodes, P is a pitch between neighboring second barrier ribs, and H is a height of the first barrier ribs, a value of H satisfies 200×L/P−25≦H (μm)≦200×L/P−5.
Abstract:
A plasma display panel includes a first substrate and a second substrate, the second substrate disposed facing the first substrate, a dielectric wall disposed between the first and second substrates to define a plurality of discharge cells, a plurality of discharge electrode pairs buried within the dielectric wall, a plurality of phosphor layers formed in the discharge cells, and a gas exhaust path unit formed between the dielectric wall and at least one of the substrates.
Abstract:
A plasma display panel (PDP) and a method of manufacturing the same suppresses variation in the height of the intersecting barrier walls with a simple method and that prevents cross talk from occurring between the discharge cells. A concave part is formed at a position contacting an intersecting part of a first barrier wall before baking and a second barrier wall before baking orthogonal to the first barrier wall before baking. When such concave part is formed, the values of the surface area per volume of the intersecting part and the surface area per volume of the first barrier wall before baking and the second barrier wall before baking between the intersecting part and the intersecting part adjacent to the intersecting part become substantially equal. As a result, the height of the intersecting part does not become high after baking, a barrier wall of aligned height is obtained, and cross talk does not occur between the discharge cells.
Abstract:
A plasma display panel is provided in which discharge connection in the column direction is prevented without increasing the number of man-hours in a formation process of a partition and without deteriorating ventilation for an exhaust process. A pattern in a plan view of a partition is made a mesh pattern in which vertical patterns are included at inter-row positions in each column. Each of first vertical walls is positioned at a boundary between columns, each of second vertical walls is arranged at a position away from a boundary between columns for each boundary between rows and each of horizontal walls is positioned at a boundary between rows. In the partition, a height of portions where the first vertical wall crosses the horizontal wall and a height of portions where the second vertical wall crosses the horizontal wall are smaller than a height of the other portions of the partition.
Abstract:
A Plasma Display Panel (PDP) in which a dummy area is arranged so as to retain phosphor paste ejected from extra nozzles when a plurality of nozzles are used to apply phosphor paste. The PDP includes a first substrate and a second substrate opposing each other; address electrodes arranged on the first substrate; display electrodes arranged on the second substrate perpendicular to a direction of the address electrodes; barrier ribs arranged in a space between the first substrate and the second substrate to define a plurality of discharge cells; and phosphor layers arranged in each of the discharge cells; a display area includes a plurality of the discharge cells arranged at positions where the address electrodes and the display electrodes cross each other; a non-display area is arranged adjacent to an edge of the display area along a direction parallel to a direction in which phosphor layers of the same color are applied to discharge cells neighboring each other; and the phosphor layers are arranged in portions of the non-display area.
Abstract:
A novel design for dummy ribs in a plasma display panel. The plasma display panel includes upper and lower substrates which are installed to be spaced apart from each other by a predetermined distance and which contain therebetween a plurality of barrier ribs and discharge spaces that are between the barrier ribs. The plasma display panel has a display region for displaying images from the discharge spaces. Outside the display region are formed sets of dummy ribs which are positioned in parallel to each other and spaced by a predetermined distance from the display region. Dummy ribs serve to support the upper and lower substrates while maintaining a predetermined distance therebetween. Each set of dummy ribs has at least one reinforcing rib specially designed to be resilient to damage. When exposed to sandblasting, the reinforcing rib remains functional and continues to keep the upper and the lower substrates separated by a predetermined distance.
Abstract:
Provided is a plasma display panel with improved ventilating capability. The plasma display panel includes a front substrate; a rear substrate that is located to face the front substrate, and defines a plurality of discharge cells which are arranged in a row direction and a column direction; and a barrier rib structure including first partitions formed between discharge cells arranged in the row direction, second partitions connecting the first partitions, and third partitions arranged between rows of the discharge cells, wherein the height of the first partitions is lower than the height of the third partitions.
Abstract:
A plasma display panel including a first substrate; a second substrate spaced apart from the first substrate and to face the first substrate; a plurality of barrier ribs disposed between the first substrate and the second substrate to define a plurality of discharge cells between the first and second substrates; and a plurality of pairs of discharge electrodes buried in the barrier ribs to surround at least a portion of each of the discharge cells, wherein the discharge cells are disposed in a zigzag fashion.
Abstract:
A plasma display panel capable of stabilizing a discharge characteristic by integrating discharge cells with a high density and efficiently exhausting the plasma display panel is provided. The plasma display panel is constructed with: first and second substrates facing each other; barrier ribs disposed between the first and second substrates to define discharge cells; address electrodes extending in a first direction and corresponding to the discharge cells; and first and second electrodes extending in a second direction that crosses the first direction and corresponding to the discharge cells. The red, green, and blue discharge cells among the discharge cells are disposed in a triangular shape. Exhaust paths are formed between neighboring discharge cells.
Abstract:
A plasma display panel capable of achieving a reduction in the reflectance of the panel and an enhancement in contrast without a reduction in brightness is disclosed. The plasma display panel includes an upper substrate, a lower substrate arranged to face the upper substrate, and barrier ribs arranged between the upper substrate and the lower substrate to define a discharge cell space. Each barrier rib has at least a portion increasing in width toward the upper substrate.