Abstract:
A flat display panel includes a first substrate and a second substrate, and the first and second substrates are sealed via a sealing member therebetween. The second substrate includes a display region and a non-display region. The display region and the non-display region include black matrix patterns, and the black matrix patterns have at least one opening in a sealing region of the second substrate. The sealing member is arranged in the sealing region.
Abstract:
Disclosed are a display filter, a display device comprising the filter and a production method for the filter. The disclosed display filter comprises a base section and a pattern section which is formed on the base section. The pattern section is formed from an adhesive material comprising metallic powder. The metallic powder is included at 10-30 parts by weight relative to the pattern section. Thus, bright room contrast can be improved by blocking light coming from outside, and electromagnetic waves generated from within a panel can be reduced.
Abstract:
A plasma display panel (PDP) includes an EMI filter supported by a glass substrate for blocking/shielding substantial amounts of electromagnetic waves, with the filter being supported by a side of the substrate opposite a viewer. In certain example embodiments, a black frit and a silver frit comprise a filter frame and are supported by the filter such that the filter is closer to the glass substrate than either or both of the frits. Alternatively, in certain example embodiments, a conductive black frit comprises a filter frame and is supported by the filter such that the filter is closer to the glass substrate than the frit. The filter has high visible transmission, and is capable of blocking/shielding electromagnetic waves. Advantageously, a transparent conductive coating (TCC) can be coated on a stock, non-cut glass sheet.
Abstract:
A display filter and a display apparatus including the display filter increase a contrast ratio, increase brightness, and have a great electromagnetic (EM) radiation-shielding effect. The display filter includes a filter base and an external light-shielding layer formed on a surface of the filter base. The external light-shielding layer includes a base substrate including a transparent resin and light-shielding patterns spaced apart on a surface of the base substrate at predetermined intervals, and including a conductive material.
Abstract:
A PDP (Plasma Display Panel) comprising a front substrate structure (first substrate structure) in which two pairs of an X electrode and a Y electrode and a non-emission area therebetween are formed, and a plurality of light-shielding films formed with spacing from the X electrode and the Y electrode in the non-emission area. The light-shielding film contains a metal material common with a metal material forming the X electrode and the Y electrode. And, the light-shielding film is formed in an island-shape having spacing from a neighboring barrier rib formed to a rear substrate structure (second substrate structure). According to the above structure, the area of the light-shielding film which may cause a capacitance-coupled portion with the X electrode, the Y electrode, or an address electrode can be made small, thereby suppressing capacitance coupling even when a conductive material is used to the light-shielding film.
Abstract:
The present invention relates to a plasma display apparatus. The plasma display apparatus comprises an upper substrate, a first electrode and a second electrode formed on the upper substrate, a lower substrate disposed to face the upper substrate, and a third electrode and a barrier rib formed in the lower substrate. First and second black matrices are formed in the upper substrate and are separated from each other on a same straight line. According to the present invention, while maintaining the function of improving a contrast ratio and reflectance of a black matrix, a short and a spotted pattern that may occur when simultaneous exposure is performed can be reduced, and so the picture quality, the cost of production, and efficiency can be improved.
Abstract:
A display filter including a base portion having a recess, a first part disposed in the recess and having a first refractive index different from a refractive index of the base portion, and a second part disposed in the recess and having a second refractive index different from at least one of the first refractive index of the first part and the refractive index of the base portion.
Abstract:
A display device according to one embodiment of the invention includes a display panel for displaying an image and an optical filter attached to the display panel. The optical filter includes an external light anti-reflection layer, a color compensation layer, an external light shielding layer, and an electromagnetic interference (EMI) shielding layer. The external light shielding layer includes a barrier rib unit including black photoresist at a gap between the EMI shielding layer and the external light anti-reflection layer or the color compensation layer, for partitioning the gap.
Abstract:
A plasma display panel and a plasma display apparatus are disclosed. The plasma display panel includes a front substrate including a scan electrode and a sustain electrode positioned parallel to each other, an upper dielectric layer positioned on the scan and sustain electrodes, a rear substrate on which an address electrode is positioned to intersect the scan and sustain electrodes, a lower dielectric layer positioned on the address electrode, a barrier rib positioned between the front substrate and the rear substrate to partition a discharge cell, and a phosphor layer positioned inside the discharge cell. The upper dielectric layer includes a glass-based material and a blue pigment. The phosphor layer includes a phosphor material and MgO material.
Abstract:
A display apparatus includes a plasma display panel (PDP) having an upper substrate at which black matrices are disposed. The apparatus includes an external light shield having a panel side facing a display surface of the PDP and an opposing viewer side facing away from the display surface. The light shield includes a base unit and includes pattern units that absorb external light from the viewer side. The pattern units have boundaries defined by intersections of the pattern units and the base unit. The boundaries define widths of pattern tops disposed toward the panel side or the viewer side and define widths of pattern bottoms disposed toward the other of the panel side and the viewer side. A distance between a pair of adjacent black matrices is 4 to 12 times greater than a distance between adjacent boundaries, of a pair of adjacent pattern units, at adjacent pattern bottoms.