Abstract:
A plasma display panel has a display region and a non-display region formed around the display region. The rear plate has data electrode that applies a drive voltage to the rear plate, a dummy electrode that is in parallel with the data electrode and does not apply a drive voltage to the rear plate, an insulating layer that coats the data electrode and the dummy electrode, and a plurality of horizontal barrier ribs formed on the insulating layer and orthogonal to the data electrodes. The data electrode is arranged in the display region and the non-display region. The dummy electrode is arranged in the non-display region. An outermost horizontal barrier rib is arranged in the non-display region. The outermost horizontal barrier rib is opposed to the data electrode via the insulating layer, and is not opposed to the dummy electrode.
Abstract:
A plasma display panel includes a front substrate providing an image display surface, a rear substrate facing the front substrate, barrier ribs arranged between the front and rear substrates to defining a plurality of discharge cells, a plurality of discharge electrodes extending across the discharge cells to generate a discharge, a front dielectric layer on the front substrate to bury the discharge electrodes, first phosphors coated within the discharge cells, second phosphors on upper surfaces of the barrier ribs and extending from the first phosphors, and a discharge gas filled into the discharge cells, wherein one or more of the front substrate, the front dielectric layer, and/or the barrier ribs is colored with a first color, and the first and second phosphors are colored with a second color.
Abstract:
A plasma display panel is disclosed. The plasma display panel includes a front substrate, a rear substrate positioned opposite the front substrate, and a barrier rib that is positioned between the front substrate and the rear substrate to partition discharge cells. The barrier rib includes a transverse barrier rib and a longitudinal barrier rib crossing each other. Depressions are positioned to be spaced apart from each other at a barrier crossing of the transverse barrier rib and the longitudinal barrier rib.
Abstract:
A plasma display for causing a stable discharge at all lines and eliminating a side abnormal discharge is disclosed. In the plasma display, a width of at least one of electrodes at a first scan line selected firstly of scan lines is different from a width of electrodes provided at other scan lines excluding the first scan line.
Abstract:
A plasma display panel reduces a resonance space between a frit and dummy partition walls so as to suppress noise and smoothly supply and exhaust a discharge gas. The plasma display panel includes a front substrate and a rear substrate that face each other, address electrodes and display electrodes that are spaced apart from each other and each extend along directions intersecting each other between the front substrate and the rear substrate, and partition walls that form a display region while partitioning a plurality of discharge cells and form a non-display region along a periphery of the display region between the front substrate and the rear substrate. The non-display region includes a first dummy area in which dummy cells are partitioned by dummy partition walls extending from partition walls disposed in the display region, and a second dummy area in which dummy cells are partitioned by dummy partition walls spaced apart from the first dummy area.
Abstract:
In a plasma display panel wherein lattice-like ribs are formed, an impurity gas inside the panel is easily exhausted. The panel has a paired substrates facing each other. The peripheral portions of the panel are bonded to each other to be sealed. The panel is manufactured by allowing an impurity gas located between the substrates to be exhausted upon carrying out the sealing/bonding process. The panel includes a cell-defining rib and a dummy rib. The cell-defining rib has longitudinal ribs and lateral ribs, which is formed in a display area between the paired substrates. The dummy rib has the same shape as that of the cell-defining rib, which is formed in a non-display area which covers from an outer edge of the display area over to the periphery of the substrates, a ventilation passage being formed in the non-display area in which the dummy rib is formed.
Abstract:
A Plasma Display Panel (PDP) which enables low-voltage address discharge, enhances maintenance of an address voltage and prevents an abnormal discharge in the outside of a display available area, includes: a front substrate; a rear substrate disposed parallel to the front substrate; a plurality of barrier ribs interposed between the front substrate and the rear substrate to define discharge cells together with the front and rear substrates; a plurality of electrodes enclosing each of the discharge cells; a fluorescent layer arranged in each of the discharge cells; and a discharge gas in the discharge cells. A portion of an outermost barrier rib defining an outside edge of an outermost discharge cell is thicker than a remaining portion of the outermost barrier rib.
Abstract:
A plasma display panel is disclosed. The plasma display panel includes a first substrate and a second substrate positioned adjacent to each other, a first barrier rib positioned between the first substrate and the second substrate and partitioning a discharge area, a sealing portion attaching the first substrate to the second substrate, and an auxiliary barrier rib. The auxiliary barrier rib may be spaced apart from the sealing portion with a predetermined distance therebetween, extended from the first barrier rib, and may include a portion with a height lower than a height of the first barrier rib positioned in the discharge area.
Abstract:
A plasma display panel includes a front glass substrate and a rear glass substrate coupled to each other by a sealing material coated at edges of the front and rear glass substrates, first and second electrodes disposed perpendicular to each other on opposing inner surfaces of the front and rear glass substrates facing each other, a dielectric layer formed on each of the opposing inner surfaces of the front and rear glass substrates to cover the first and second electrodes, partitions formed on an upper surface of the dielectric layer of the rear glass substrate, red, green and blue fluorescent substances coated between the partitions, and a non-light emitting zone filling portion formed by filling a non-light emitting zone existing between the outermost one of the partitions and the sealing material with a material used for one of the partitions.
Abstract:
A Plasma Display Panel (PDP) enabling optimization of a process to apply phosphor paste in order to achieve mass production using a jet nozzle method includes dummy areas structured to determine whether application conditions such as an ejecting pressure or the like are stable by measuring a depth of the applied layer after applying phosphor paste at a portion thereof in advance. The PDP includes: a first substrate and a second substrate opposing each other; address electrodes arranged on the first substrate; display electrodes arranged on the second substrate along a direction perpendicular to the address electrodes; barrier ribs arranged in a space between the first substrate and the second substrate to define a plurality of discharge cells, and phosphor layers arranged in each of the discharge cells.