摘要:
It is possible eliminate a fringe pattern produced at the time of incidence of polarized light of a light distribution control element, in which stray light derived from outside unnecessary light in a liquid crystal display apparatus or the like can be effectively reduced, and bright, wide viewing angle characteristics can be achieved when the display is viewed at any angle by an observer. In a light distribution control element constituted of a transparent base member, an array of a plurality of micro-lenses (transparent beads) densely arranged on the transparent base member and a light absorbing layer having very small opening portions substantially at focal positions of the micro-lenses, the transparent base member is constituted of a transparent body which is substantially isotropic optically or a transparent body having uniaxial optical anisotropy.
摘要:
A reflective projection screen has in a first aspect a plurality of reflective elements. The upper surface of the reflective elements is either coated or textured to interfere with reflection of light from the upper surface to an adjacent reflective element. In a second aspect of the invention, a screen is provided that reflects light in the vertical direction like a plane surface, while reflecting light in the horizontal direction back toward the light source. In a third aspect of the invention, a projection system projects a three-dimensional image.
摘要:
A rear projection screen including a Fresnel lens sheet arranged on the projection side, and a lenticular lens sheet arranged on the observation side. The Fresnel lens sheet has a lenticular lens for vertical diffusion on its light-entering side. The lenticular lens for vertical diffusion contains a plurality of convex lenses that extend horizontally, and these plural convex lenses are arranged with a constant pitch. Further, the diffusion angle of the lenticular lens for vertical diffusion continuously increases, and, at the same time, the direction of diffusion is gradually inclined to the central part side as the distance from the central part toward each of the edges on the screen surface increases. The diffusion properties (the angle and direction of diffusion) of the lenticular lens thus continuously vary between the central part and edges of the screen surface.
摘要:
An optical system with improved color shift characteristics is described. Preferably, the system comprises a rear projection display that includes a light source providing light in first and second distinct polarization states, and a beaded screen.
摘要:
An East-West switching transistor is coupled between a flyback transformer primary winding and a horizontal deflection output transistor circuit to control retrace energy to obtain an East-West modulation of the deflection current amplitude as required for East-West pincushion raster correction. A pair of series coupled first and second capacitors forming a capacitive voltage divider are coupled to a retrace resonant circuit that includes the deflection winding via a sampling switch, during a first half of a retrace interval, to produce a first ramping capacitor voltage in the first capacitor from a portion of a retrace pulse voltage. The first capacitor is coupled to an East-West pincushion raster correction current for producing a second ramping capacitor voltage in the first capacitor that ramps in an opposite direction. A comparator is responsive to the capacitor voltage for controlling a conduction interval of the East-West switching transistor.
摘要:
The present invention is a screen, such as is used in back-lit projection screens, having a Fresnel lens laminated to another layer for support. The screen includes a Fresnel lens having an output surface, and a dispersing screen supportingly attached on a first side to the output surface of the Fresnel lens.
摘要:
Provided is a lenticular lens sheet on which external light reflection is greatly reduced and which gives high-contrast sharp images. The lenticular lens sheet has a plurality of lenticular lenses formed on one surface of a light-transmissive substrate and having, on the other surface of the substrate, convex lenses 2, and external light-absorbing ridges 3 as formed alternately with those convex lenses and coated with an external light-absorbing layer 4 on their tops, in which every furrow 5 between each convex lens 2 and each external light-absorbing ridge 3 that ate adjacent to each other is further coated with an external light-absorbing layer 6. The external light-absorbing layer may be not only on the top of each ridge but also around each ridge adjacent to the top thereof.
摘要:
In order to display the image from the projector, the image display system includes the blinds installed in front of the window and consisting of Yupo tracing film, transparent acryl, and coating vinyl which are attached to each other and enable to display image, and a projecting unit such as a slide projector or an LCD projector for projecting image to the blinds such that the image from the projector in a building can be displayed on a rear surface of the blinds through the window out of the building so to give effect of transferring information and providing advertisement and publicity.
摘要:
A rear projection screen including a lenticular lens sheet with lenticular lenses for condensing or diffusing light and a transparent smooth layer having a surface roughness of 0 to 40 micrometers placed on the surface of the light-emerging side of the lenticular lens sheet. The rear projection screen can give an image that (1) is free from roughening, (2) has high fidelity gloss reproduction, and (3) has excellent contrast and sharpness.
摘要:
A rear projection screen of the present invention includes lens sheets or optical sheets having an optical function of condensing or diffusing light. The lens sheets or optical sheets have, as a whole, two or more diffusing layers (diffusing parts) separately provided in the light-transmitting direction. It is preferable that one of the two or more diffusing layers be provided on the light-entering-side surface of the outermost lens sheet or optical sheet on the light source side and that another one of the diffusing layers be provided on the light-emerging-side surface of the outermost lens sheet or optical sheet on the observation side. Any two of the two or more diffusing layers are such that the light-source-side diffusing layer has a diffusing power lower than that of the observation-side diffusing layer. Further, it is preferable that the types (refractive indexes or average particle diameters) of diffusers to be respectively incorporated into any two of the two or more diffusing layers be different from each other.