Abstract:
A method for manufacturing a cathode comprises the steps of: a process for applying onto a substrate a fluid mixture comprising polymers or precursors to the polymers, fine particles of electroconductive material or organic metal compound, and solvent; a process for removing the solvent by heating the fluid mixture applied on the substrate, thereby obtaining an electroconductive organic film comprising the polymers and the electroconductive material; and a process for forming a gap at a portion of the electroconductive organic film by applying an electrical current thereto. Accordingly, a simple method for manufacturing cathodes, electron sources, and image forming apparatuses with excellent electron emitting properties can be realized.
Abstract:
A method for manufacturing an electron emission element comprising, between its electrodes, a conductive film having an electron emission section. The method comprising the steps of forming a gap in the conductive film located between the electrodes, and applying a voltage between the electrodes in an atmosphere that has an aromatic compound with a polarity or a polar group and in which the partial pressure ratio of water to the aromatic compound is 100 or less.
Abstract:
A method for producing a durable electron-emitting device having a uniform electron emission characteristic, an electron source, and an image-forming apparatus having a uniform display characteristic for a long period are provided. The method for producing an electron-emitting device according to the present invention includes the steps of: disposing a cathode electrode on a surface of a substrate; providing an electrode opposite the cathode electrode; disposing plural pieces of fiber containing carbon as a main component on the cathode electrode; and applying potential higher than potential applied to the cathode electrode under depressurized condition to an electrode opposite the cathode electrode.
Abstract:
A method for producing an electron-emitting device comprising an electroconductive film having an electron-emitting region between electrodes, wherein a step of forming the electron-emitting region in the electroconductive film comprises a step of heating the electroconductive film and a step of energizing the electroconductive film, in an atmosphere in which a gas for promoting cohesion of the electroconductive film exists.
Abstract:
A method for manufacturing an electron emission element comprising, between its electrodes, a conductive film having an electron emission section. The method comprising the steps of forming a gap in the conductive film located between the electrodes, and applying a voltage between the electrodes in an atmosphere that has an aromatic compound with a polarity or a polar group and in which the partial pressure ratio of water to the aromatic compound is 100 or less.
Abstract:
An insulating layer 2 and a gate electrode layer 1 are sequentially formed on a conductive substrate 3; then the insulating layer 3 and the gate electrode layer 1 are etched to form an opening extending to the conductive substrate 3; then an emitter material is deposited on the surfaces of the conductive substrate 3 and of the gate electrode layer 1 which are exposed on the bottom of the said opening from a direction vertical to the conductive substrate 3, to form a sharp emitter tip 5 within the opening; and finally the emitter material deposited on the upper face of the gate electrode layer 1 is removed, to provide a field emission cathode.
Abstract:
In a shadow mask structure, mounting holes are provided on two sides of a shadow mask to which tension is not applied, and a vibration-absorbing body is loosely engaged in these mounting holes.