Abstract:
A color cathode-ray tube employs a tint or dark tint glass panel having optimal transmittance in order to solve a problem of brightness balance of a periphery to a center of a screen becoming degraded due to a difference between glass transmittances. The cathode-ray tube comprises a panel, an external surface of which is substantially flat and an internal surface of which has a fluorescent screen with a predetermined curvature, and a shadow mask which is placed at a predetermined distance apart from the internal surface of the panel and has a plurality of electron beam through-holes formed therein.
Abstract:
A funnel structure for a cathode ray tube satisfies following equations 0.33≦Rhmaj/Rhmaj≦0.51, Rhmaj=Hmaj/Umaj, Rmaj=amaj/bmaj, wherein a length of a major axis evaluation line as an imaginary line connecting the major axis outer end of a sealing surface, at which a panel meets a funnel, with the major axis outer end of a TOR (top of round), at which a body portion meets a yoke portion, is defined as bmaj; a length from a point on the major axis evaluation line, which has a maximum vertical line length to the outer surface of the funnel, to the major axis outer end of the sealing surface is defined as amaj; a maximum length of the vertical line is defined as Hmaj; and ½ of a major axis length of an effective surface of the panel is defined as Umaj.
Abstract:
The present invention provides an improvement in the mounting of a cathode-ray tube within a bezel. The cathode-ray tube includes a unitary shellbond frame having integral mounting lugs which are positioned at locations either in the corners or off of the corners. The mounting lugs are formed with tapered sections along a depth dimension to allow a tube having the shellbond frame applied to be simply lowered into a bezel having lug receiving recesses of a complimentary shape. The tapered lug and complimentary lug receiving recess provides self-alignment of the tube before it is secured to the bezel.
Abstract:
A diagonal inner-face curved portion is formed on an inner face of a diagonal portion of a pyramid-shaped yoke portion. The diagonal inner-face curved portion is formed to make at least one of partially inner-face curved portions at the major axis side and the minor axis side of the diagonal axis swell to the outward side. The partially inner-face curved portions at the major axis side and the minor axis side are formed by circular arced portions with different radii to each other.
Abstract:
The present invention relates to a getter placement and attachment assembly for securing and placement of the getter along the major axis of a CRT. The getter placement and attachment assembly includes a getter spring for removably securing the getter to an internal magnetic shield affixed to the frame of the color selection electrode or mask frame of a CRT. The internal magnetic shield has sidewalls enclosures with a plurality of apertures therethrough along the major axis of the CRT to permit optimum deposition of a getter film within the CRT.
Abstract:
A color cathode ray tube is generally constituted from a panel section for visually displaying images and a neck portion containing therein an electron gun assembly plus a funnel section for coupling the panel section and the neck portion together. The panel comprises on its outer surface a colored film that includes a coloring matter or pigment for color-selective absorption of light rays and fine or micro-particles with electricity-resistant property for letting the pigment scatter or disperse. With said arrangement, it is possible to improve the light absorbability of the colored film, thereby enabling provision of the intended cathode ray tube with improved contrast.
Abstract:
A video shield for a monitor is disclosed, which includes a video shield engaged at a rear end portion of the electron gun and having a predetermined shaped through hole through which the electron gun passes and having a plurality of snap holes formed around the through hole, a bracket being separable from the video shield wherein a circle hole is formed at a portion corresponding to the through hole, a plurality of displaceable distal members are formed on an inner surface of the circle hole at a certain distance from each other and are protruded in the front direction and pass through the through hole and surrounds an outer surface of the electron gun, and a plurality of snap members are protruded at a portion neighboring with the circle hole and are engaged with the snap holes, a first means for fixing the video shield at the electron gun by pressing the outer surfaces of the displaceable distal members at an outer surface of the electron gun by a snap method, and a second means for stably fixing the video shield at the electron gun by generating a certain friction force between an outer surface of the electron gun and the inner surfaces of the displaceable distal members in the case that the video shield is detachable in the interiors of the displaceable distal members, for implementing a simpler assembling process and decreasing an assembling time based on a snap method.
Abstract:
A magnetic shield (20) for a cathode ray tube includes a body portion and a skirt section (21) around the body portion. The skirt section (21) has a skirt portion (23) having a free edge (25) and being connected to the body portion at its opposite edge (26), wherein the length of the free edge (25) is less than the length of the opposite edge (26).
Abstract:
A method of manufacturing an electron gun having a sub-assembly to interconnect the beaded unit and the base of the electron gun. This sub-assembly is manufactured by making a pattern of apertures in a planar element, thereby forming a number of securing elements. In the next step, portions of the securing elements are bent out of the plane of the planar element and then connected to an insulating plate, thus forming the sub-assembly of securing elements and insulating plate. This sub-assembly is preferably provided with funnel-shaped apertures to lead the electric leads of a number of gun electrodes through the insulating plate. This allows an accurate and easy interconnection of the electric leads and the pins of the base.
Abstract:
A cathode ray tube (1) comprises an electrically conductive layer (10) shielding against alternating electric fields produced by the deflection unit (5). The electrically conductive layer (10), including an electrically conductive polymer, is provided on at least a part of the funnel portion (6) of the tube (1). The electrically conductive polymer is preferably chosen from the group of polythiophenes. Good results were obtained with a layer comprising poly-3,4-ethylene dioxythiophene. Application of this compound prevents the occurrence of damage to the tube by arcing phenomena and thus reduces the necessity of an insulating film between the tube (1) and the deflection unit (5).