Abstract:
The present disclosure provides toners and processes for making said toners. In embodiments, the toners are invisible when viewed under natural light, but possess a UV emitter that renders them visible when exposed to UV light of a specific wavelength. By selecting the appropriate UV emitter and utilizing an ionic crosslinker, the gloss of the toner may be tailored to match the gloss of any substrate, such as paper, to which the toner is to be applied, thereby further enhancing its invisibility under visible light.
Abstract:
Exemplary embodiments provide compositions and methods for an erasable medium that can include a photochromic composite containing a photochromic polymer dispersed in a polymer binder, a similar type polymer of a backbone portion of the photochromic polymer.
Abstract:
Disclosed is an item, for example a document, including a substrate having thereon a multiplicity of separate printed markings, wherein the printed markings include both conductive printed markings and substantially non-conductive printed markings. The different conductive and substantially non-conductive regions on the substrate can be detected, for example by measuring the resistance or current of each printed marking. The pattern of different conductive and substantially non-conductive regions can be used as a security pattern of authenticity that cannot be replicated by standard office equipment, and/or can be used to encrypt information in binary code form in the item. A system for forming and detecting the different printed markings is also described.
Abstract:
A method for determining whether an item has been exposed to an environmental condition during a monitoring period. The method includes placing a sensor at least in proximity to the item at the beginning of the monitoring period so that the sensor will be exposed to a level of an environmental condition that can be correlated to an exposure level of the item to the environmental condition; reading the sensor; and determining from reading the sensor whether the item has been exposed to the environmental condition. The sensor includes a detecting material comprising a photochromic or photothermochromic material, the detecting material selected so that upon exposure to the environmental condition the detecting material exhibits a detectable color change.
Abstract:
Disclosed is a radiation curable ink containing a fluorescent material that upon exposure to activating energy fluoresces such that an image that was not visible prior to exposure to the activating energy becomes visible. Also disclosed are an ink jet system and a process printing the disclosed radiation curable ink.
Abstract:
An image-forming medium and methods for forming and imaging the medium are provided. The disclosed medium can be strongly colored under room illumination (or deliberate UV) and can be selectively discolored at an appropriate light wavelength to form an image. In one embodiment, the image-forming medium can include a substrate (e.g., a sheet of paper), a photochromic material incorporated with the substrate, and a photo-absorbing material incorporated with the photochromic material. Exemplary methods for using the image-forming medium to make a transient image can include first forming the image-forming medium by applying a coating solution containing photochromic material to the substrate or paper. The image-forming medium can have a medium color and can then be selectively exposed to a radiation through a mask to convert the photochromic material from a colored form to a colorless form and thus to form an image having a color contrast with its background.
Abstract:
An image-forming medium and methods for forming and imaging the medium are provided. The disclosed medium can be strongly colored under room illumination (or deliberate UV) and can be selectively discolored at an appropriate light wavelength to form an image. In one embodiment, the image-forming medium can include a substrate (e.g., a sheet of paper), a photochromic material incorporated with the substrate, and a photo-absorbing material incorporated with the photochromic material. Exemplary methods for using the image-forming medium to make a transient image can include first forming the image-forming medium by applying a coating solution containing photochromic material to the substrate or paper. The image-forming medium can have a medium color and can then be selectively exposed to a radiation through a mask to convert the photochromic material from a colored form to a colorless form and thus to form an image having a color contrast with its background.
Abstract:
A reimageable printing member such as for use in flexography, includes a layer having a multiplicity of holes, wherein the holes include therein a dimension change material and a printing material upon the dimension change material. Thus, the holes house vertically expandable units, the top portion of which is capable of protruding out of an opening of the hole at a top surface of the layer. Each of the holes may be individually addressed to provide a stimulus that initiates a change in dimension in the dimension change material. In this manner, selected ones of the units may be made to print a corresponding portion of an image on an image receiving substrate brought into contact with the printing member.
Abstract:
Fluorescent organic nanoparticles and a process for producing fluorescent organic nanoparticles having a size of less than about 500 nanometers comprising a polymeric matrix comprising one or more crosslinked polymer resins, and comprising one or more fluorescent dyes incorporated into the polymer matrix.
Abstract:
An ink set includes a plurality of inks, at least one ink but less than all inks of the ink set including an ink vehicle, colorant and fluorescence agent and remaining additional inks including an ink vehicle, colorant and free of fluorescence agent. At least a first ink grouping and a second ink grouping of the ink set form a combination, the first and second groupings of the combination exhibiting a substantially same color under ambient light conditions upon image formation. The first ink grouping and the second ink grouping of the combination contain a different amount of the fluorescence agent, wherein upon exposure to activating energy, the fluorescence agent fluoresces to cause a visible change in the color of a pattern formed in an image by the first ink grouping as compared to the second ink grouping.